STAT400. Sample questions for midterm 2.

1. In this problem you may neglect the probability of twins.
(a) A family has 5 children. Find the probability that they have 2 boys and 3 girls.
(b) A family decides to have children until they have 3 girls. Find the probability that they have 2 boys.
(c) A family decides to have children until they have 3 girls. Let C be the total number of children in the family. Compute EC and VC.

Solution. (a) The number of boys has binomial distribution with parameters (5, 1/2). So the answer is $\binom{5}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}=\binom{5}{2}\left(\frac{1}{2}\right)^{5}$.
(b) The number of boys has negative binomial distribution with parameters $(3,1 / 2)$. So the answer is $\binom{4}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}=\binom{4}{2}\left(\frac{1}{2}\right)^{5}$.
(c) $C=B+3$ where B is the number of boys. So using the formulas for negative binomial distribution we get $E(C)=E(B)+3=3+3 \frac{1 / 2}{1 / 2}=6, V(C)=V(B)=3 \frac{1 / 2}{(1 / 2)^{2}}=6$.
2. (a) 40% of lightbulb produced by Shining Beauty company have suboptimal performance. 5 bulbs are chosen for test. Find the probability that 2 bulbs or less have suboptimal performance.
(b) 40% of lightbulb produced by Shining Beauty company have suboptimal performance. 500 bulbs are chosen for test. Compute approximately the probability that 210 bulbs or less have suboptimal performance.
(c) 0.4% of lightbulb produced by Light company have suboptimal performance. 500 bulbs are chosen for test. Compute approximately the probability that 2 bulbs or less have suboptimal performance.

Solution. (a) The number of suboptimal has binomial distribution with parameters $(5,0.4)$. So the answer is $\binom{5}{2}(0.4)^{2}(0.6)^{3}+\binom{5}{1}(0.4)^{1}(0.6)^{4}+(0.6)^{5}$.
(b) Let S be the number of suboptimal bulbs. Then $E S=500 * 0.4=200, V S=$ $500 * 0.4 * 0.6=120$, so $\sigma_{S}=\sqrt{V S} \approx 11$. Thus using normal approximation to binomial we get $S \approx N(200,120) \approx 200+11 Z$ where Z is a standard normal. Hence
$P(S \leq 210)=P(S \leq 210.5)=P(200+11 \leq 210.5)=P\left(Z \leq \frac{10.5}{11}\right) \approx P(Z \leq 0.95) \approx 0.83$.
(c) Let S be the number of suboptimal bulbs. Then $E S=500 * 0.004=2$. Let Y denote Poisson random variable with parameter 2. Using Poisson approximation to binomial we get

$$
P(S \leq 2)=P(Y=0)+P(Y=1)+P(Y=2)=e^{-2}\left(1+2+\frac{2^{2}}{2}\right) \approx 0.68
$$

3. Calls to a customer service center form Poisson process with intensity 4 calls per hour.
(a) Find the probability that there are less than 3 calls between 9:00 and 10:00.
(b) John works from 9:00 am to 3:00 pm. His shift is divided into 6 one hour intervals. John calls an interval easy if there are less than 3 calls during that interval. Find the probability that during a particular day he has at least one easy interval.
(c) Find the probability that the first call during John watch arrives between 9:00 and 9:20 and the second between 9:20 and 9:40.

Solution. (a) The number of calls between 9:00 and 10:00 has Poisson distribution with parameter 4. Hence

$$
P(N(9,10) \leq 2)=e^{-4}\left(1+4+\frac{4^{2}}{2}\right) \approx 0.24
$$

(b) The probability that none of the intervals are easy is $0.76^{6} \approx 0.2$. So the probability of having at least one easy interval. $1-0.2=0.8$.
(c) For this to occur there needs to be exactly one call between 9:00 and 9:20 (probability $\frac{4}{3} e^{-4 / 3}$ and more than one call between 9:20 and 9:40 (probability $1-e^{-4 / 3}$) so the answer is $\frac{4}{3} e^{-4 / 3}\left(1-e^{-4 / 3}\right)$.
4. Let X have cumultive density function

$$
F(x)= \begin{cases}0, & \text { if } x \leq 0 \\ \frac{x^{2}+x^{4}}{2} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x \geq 0\end{cases}
$$

(a) Compute density of X.
(b) Compute EX and VX.
(c) Let $Y=X^{3}$. Compute $E Y$ and $V Y$.

Solution. (a) $f(x)=F^{\prime}(x)=x+2 x^{3}$.

$$
\begin{gathered}
\text { (b) } E X=\int_{0}^{1} x\left(x+2 x^{3}\right) d x=\int_{0}^{1} x^{2} d x+2 \int_{0}^{1} x^{4} d x=\frac{11}{15} \\
E X^{2}=\int_{0}^{1} x^{2}\left(x+2 x^{3}\right) d x=\int_{0}^{1} x^{3} d x+2 \int_{0}^{1} x^{5} d x=\frac{7}{12} \\
V(X)=\frac{7}{12}-\left(\frac{11}{15}\right)^{2}=\frac{41}{900} .
\end{gathered}
$$

$$
\begin{gathered}
\text { (c) } E Y=\int_{0}^{1} x^{3}\left(x+2 x^{3}\right) d x=\int_{0}^{1} x^{4} d x+2 \int_{0}^{1} x^{6} d x=\frac{17}{35} . \\
E Y^{2}=\int_{0}^{1} x^{6}\left(x+2 x^{3}\right) d x=\int_{0}^{1} x^{7} d x+2 \int_{0}^{1} x^{9} d x=\frac{12}{35} . \\
V(X)=\frac{12}{35}-\left(\frac{17}{35}\right)^{2}=\frac{131}{1225} .
\end{gathered}
$$

5. Let X have normal distribution with mean 2 and standard deviation 2.
(a) Compute 25 and 75th percentiles.
(b) Compute $P(X>5)$.
(c) Compute $E\left(X^{2}\right)$.

Solution. $X=2+2 Z$ where $Z \sim N(0,1)$. Thus $P(X \leq x)=P\left(Z \leq \frac{x-2}{2}\right)$. So if $P\left(Z \leq \frac{x_{0.75}-2}{2}\right)=0.75$ then $\frac{x_{0.75}-2}{2}=0.67$ and so $x_{0.75}=2+2 * 067=3.34$. Likewise $x_{0.25}=2-2 * 0.67=0.66$.
(b) $P(X>5)=P(2+2 Z>5)=P(Z>1.5) \approx 0.0668$.
(c) $E\left(X^{2}\right)=V(X)+(E X)^{2}=4+4=8$.
6. Let the distribution of X and Y be given in the following table.

$X \backslash Y$	1	2	3
0	.05	.10	15
1	.05	.05	.10
2	.20	.05	.25

(a) Compute the marginal distributions of X and Y.
(b) Compute $P(X=Y)$.
(c) Compute $\operatorname{Cov}(X, Y)$.

Solution.

(a) $|$| $X \backslash Y$ | 1 | 2 | 3 | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | .05 | .10 | 15 | 0.30 |
| 1 | .05 | .05 | .10 | 0.20 |
| 2 | .20 | .05 | .25 | 0.50 |
| | | 0.30 | 0.20 | 0.50 |

(b) $P(X=Y=1)+P(X=Y=2)=0.10$.
(c) $E X=0 * 0.30+1 * 0.2+2 * 0.5=1.2, E Y=1 * 0.30+2 * 0.2+3 * 0.5=3.2$,
$E(X Y)=0 *(0.05+0.10+0.15)+1 * 0.05+2 *(0.20+0.05)+3 * 0.10+4 * 0.05+6 * 0.25=2.55$
$\operatorname{Cov}(X, Y)=2.55-1.2 * 2.2=-0.09$.
7. Let (X, Y) have uniform distribution on the trapezoid $0 \leq y \leq 1,0 \leq x \leq 1+y$.
(a) Compute the marginal distributions of X and Y.
(b) Compute $V(X)$.
(c) Compute $\operatorname{Cov}(X, Y)$.

Solution. Area(Trapezoid) $=\frac{1+2}{2} * 1=\frac{3}{2}$ so the density of $(X, Y)=\frac{2}{3}$.
(a) Hence if $x \in[0,1]$ then $f_{X}(x)=1 * \frac{2}{3}=\frac{2}{3}$ and if $x \in[1,2]$ then $f_{X}(x)=\frac{2}{3}(1-(1-x))=$ $\frac{2(2-x)}{3}$ since the slanted side of the trapezoid has form $x=1+y$, that is $y=x-1$. $f_{Y}(y)=\frac{2}{3} *(1+y)=\frac{2(1+y)}{3}$.
(b) $E X=\int_{0}^{1} \frac{2}{3} x d x+\int_{1}^{2} \frac{2}{3}(2-x) x d x-=\left.\frac{x^{2}}{3}\right|_{0} ^{1}+\int_{1}^{2} \frac{4 x}{3} d x-\int_{1}^{2} \frac{2 x^{2}}{3} d x=\frac{1}{3}+\left.\frac{2 x^{2}}{3}\right|_{1} ^{2}-\left.\frac{2 x^{3}}{9}\right|_{1} ^{2}=\frac{7}{9}$.

Likewise

$$
\begin{gathered}
E Y=\int_{0}^{1} \frac{2(1+y)}{3} y d y=\int_{0}^{1} \frac{2 y}{3} d y+\int_{0}^{1} \frac{2 y^{2}}{3} d y=\frac{1}{3}+\frac{2}{9}=\frac{5}{9} . \\
E X^{2}==\int_{0}^{1} \frac{2}{3} x^{2} d x+\int_{1}^{2} \frac{2}{3}(2-x) x^{2} d x-=\left.\frac{2 x^{2}}{9}\right|_{0} ^{1}+\int_{1}^{2} \frac{4 x^{2}}{3} d x-\int_{1}^{2} \frac{2 x^{3}}{3} d x=\frac{1}{3}+\left.\frac{4 x^{3}}{9}\right|_{1} ^{2}-\left.\frac{x^{4}}{6}\right|_{1} ^{2}=\frac{5}{6} . \\
V(X)=\frac{5}{6}-\left(\frac{7}{9}\right)^{2}=\frac{37}{162} . \\
(c) E(X Y)=\frac{2}{3} \int_{0}^{1} y\left(\int_{0}^{1+y} x d x\right) d y=\int_{0}^{1} \frac{y(1+y)^{2}}{3}=\frac{1}{3} \int_{0}^{1}\left(y+2 y^{2}+y^{3}\right) d y=\frac{17}{36} .
\end{gathered}
$$

Hence $\operatorname{Cov}(X, Y)=\frac{17}{36}-\frac{7}{9} * \frac{5}{9}=\frac{13}{324}$.
8. Let X be independent, X have uniform distribution on $[0,1]$ and Y have exponential distribution with parameters 1. Let $Z=X+Y$.
(a) Compute the density of Z.
(b) Compute $\operatorname{Cov}(X, Z)$.
(c) Compute $P(3 Y>Z)$.

Solution. Recall that x has density equal to 1 on $[0,1]$ and equal to 0 elsewhere and y has density e^{-y} if $y \geq 0$ and 0 elsewhere.
(a) If $z \leq 1$ then

$$
p(z)=\int_{0}^{z} e^{-x} d x=1-e^{-z}
$$

If $z \geq 1$ then

$$
p(z)=\int_{z-1}^{z} e^{-x} d x=e^{-z}(e-1) .
$$

(b) $\operatorname{Cov}(X, Z)=\operatorname{Cov}(X, X+Y)=\operatorname{Cov}(X, X)+\operatorname{Cov}(X, Y)=V(X)+0=\frac{1}{12}$.
(c) $P(3 Y>X+Y)=P(2 Y>X)=P(Y>X / 2)=\int_{0}^{1} e^{-x / 2} d x=2\left(1-e^{-1 / 2}\right) \approx 0.78$.
9. Let $S=X_{1}+X_{2}+\ldots X_{162}$ where X_{j} are independent identically distributed random variables. Suppose that X_{j} have density equal to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Compute ES.
(b) Compute VS.
(c) Compute approximately $P(S>110)$.

Solution. (a) $E X_{1}=\int_{0}^{1} 2 x * x d x=\int_{0}^{1} 2 x^{2} d x=\frac{2}{3}$. Hence $E S=162 * \frac{2}{3}=108$.
(b) $E\left(X_{1}^{2}\right)=\int_{0}^{1} 2 x * x^{2} d x=\int_{0}^{1} 2 x^{3}=\frac{1}{2}$. Hence $V X_{1}=\frac{1}{2}-\frac{2^{2}}{3^{2}}=\frac{1}{18}$. Thus $V S=162 * \frac{1}{18}=9$ and $\sigma_{S}=3$.
(c) By the central Limit Theorem $S \approx N(108,9)$, that is $S \approx 108+3 Z$ where $Z \sim N(0,1)$. Hence

$$
P(S>110) \approx P(108+3 Z>110)=P\left(Z>\frac{2}{3}\right) \approx 0.75
$$

10. 60 scientists from 30 universities attend a conference. The conference includes a lunch in a cafetria which has 30 tables each suitable for 2 people. The people seated for lunch at random. Let $X_{j}=1$ if the scientists from university j seat togather and $X_{j}=0$ otherwise.
(a) Compute $E\left(X_{1}\right)$ and $V\left(X_{1}\right)$.
(b) Compute $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
(c) Let $X=X_{1}+X_{2}+\ldots X_{30}$ be the number of tables occupied by the people from the same university. Compute $E X$ and $V X$.
Solution. (a) X_{1} has Bernoulli distribution and $P\left(X_{1}=1\right)=\frac{1}{59}$. Hence $E\left(X_{1}\right)=1=\frac{1}{59}$, $V\left(X_{1}\right)=\frac{1}{59} * \frac{58}{59}=\frac{58^{2}}{59}$.
(b) $E\left(X_{1} X_{2}\right)=P\left(X_{1}=1, X_{j}=2\right)=P\left(X_{1}=1\right) P\left(X_{2}=1 \mid X_{1}=1\right)=\frac{1}{59} * \frac{1}{57}$.
$\operatorname{Cov}\left(X_{1}, X_{2}\right)=\frac{1}{59}\left(\frac{1}{57}-\frac{1}{59}\right)=\frac{2}{57 * 59^{2}}$.
(c) $E X=E\left(X_{1}+X_{2}+\ldots X_{30}\right)=\frac{30}{59}$.

$$
V(X)=\sum_{j=1}^{30} V\left(X_{j}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)=30 * \frac{58}{59^{2}}+30 * 29 * \frac{2}{57 * 59^{2}}=\frac{30 * 58^{2}}{57 * 59^{2}} .
$$

