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1. Overview

Earth’s early history is marked by a giant impact with a Mars-sized object which led to the
formation of the moon. This impact event was the source of a substantial amount of melting
of the Earth’s interior. Subsequent cooling of the Earth involved extensive crystallization
in this “magma ocean” over a relatively short period of time. While chemical evidence
from ancient sources provides some clues on the rate of cooling, computational models of
such phenomena are sparse.
The presented work uses the dual reciprocity boundary element method (DRBEM) to

model heat flow in a multiphase fluid. DRBEM extends on the boundary element method
(BEM) allowing one to solve the heat equation only on the boundary of the problem,
avoiding expensive rediscretization found in traditional methods. DRBEM works by ap-
proximating the residual term of the PDE, which would be troublesome to use in BEM,
by a linear combination of radial basis functions chosen a priori. Using the approximation
of the residual allows for the boundary method to be applied to more complicated PDEs
such as the heat equation. The research presented extends on DRBEM to solve the heat
equation in a bounded magma ocean with multiple advecting crystals.

2. Governing equations and boundary integrals

Figure 1: The mesh for the
four crystal problem. The
boundary elements are ap-
proximated using cubic spline
interpolation. The domain
nodes are not structured and
thus are not encumbering during
rediscretization.

Modeling the crystal settling behavior requires solving a cou-
pled system of partial differential equations. To facilitate us-
ing DRBEM, a system of equations is written for the P + 1
domains. The bounded domains {Ωp}Pp=1 represent the P
crystals in the suspension. The bounded domain represent-
ing the infinite magma ocean is denoted Ω0.

−∇p + µp∇2u + ρpb = 0 x ∈ Ωp p = {0, 1, . . . , P}(1)
∂θ

∂t
+ u · ∇θ − κp∇2θ = b x ∈ Ωp p = {0, 1, . . . , P}(2)

where µp and ρp are the viscosity and density of the fluid
in domain Ωp, and κp is the thermal diffusivity of the p-th
domain.
Applying standard BEM and DRBEM procedures, (1) and

(2) can be rewritten as a system of boundary integral equa-
tions [1][2]:

ui = u∞ +
2

1 + λi



−
1

4πµi

P
∑

p=1

∫

Γp
∆f p · Ji dΓp +

P
∑

p=1

1

2π
(1− λp)

∫

Γp
n̂ ·Ki · u dΓp



 (3)

θic
p
i +

∫

Γp

[

(∇θ · n̂) θ∗i −
(

∇θ∗i · n̂
)

θ
]

dΓp =

1

κp

Jp
∑

j=1

βp
j

(

cp,ji θ̂p,ji +
∫

Γp

[(

∇θ̂p,j · n̂
)

θ∗i −
(

∇θ∗i · n̂
)

θ̂p,j
]

dΓp
)

(4)

where J and K are Greens functions, ∆f the jump in surface
tension, and λp = µp/µ0 is the viscosity ratio for the Stokes
equation. For the heat equation θ∗ is the Greens function for the
Laplace operator and θ̂p,j is the solution to

∇2θ̂p,j = f p,j, (5)

with βp
j chosen such that

∑

j β
p
jf

p,j ≈ ∂θ
∂t+~u ·∇θ−b in Ωp, where

f p,j are appropriate radial basis functions (RBFs). Numerical
methods for solving (3) have been presented [3][4] and (4) [5][6]
on bounded domains. The current work focuses on numerical
solutions to (4) for the multicrystal system.

The linear system for each domain is written separately. The
potential and flux across the particle-suspension boundary are
matched at the linear algebra stage. The crystals have constant
temperature and the steady state temperature for the suspension
in the tank is computed.

The ultimate goal is to solve the transient problem with ther-
mal interactions between the particles and the suspension. How-
ever, the linear system produced by DRBEM is often highly ill-
conditioned leading to instability in the marching schemes.

Figure 2: (Top) One crystal. (Middle) Four crystals. (Bottom) Thirteen
crystals. Each particle has 24 boundary nodes. The crystals are configured to
fit into a larger circle for a given radius and minimum separation.

3. Numerical Results

The steady state thermal conduction for several crystal config-
urations is calculated numerically. DRBEM only solves for the
solution on the boundary of the problem, however the solution
on the boundary can be used to solve for solution in the domain.
This can be done to obtain high-resolution images of the thermal
diffusion or gather profile samples.

From the numerical simulations, one can see that the thermal
profile grows as more crystals are added to the configuration. The
fact that the steady state thermal profile are as such indicates
that a cluster of several crystals cooling in tandem have a greater
cooling affect than isolated particles. This results show that it may
be possible to effective cool a large amount of fluid with smaller
arrays of cool crystals.

In the near future, the model will be coupled with a Stokes
flow solver to allow for the thermal advection of the system to be
computed. By using BEM and DRBEM the solution only needs
to be computed on the boundary. Using fast methods allows for
the thermal profiles to be computed quickly and efficiently.

Figure 3: Numerical solution for one crystal (top). Numerical solution for
four crystals (middle). Numerical solution for seventeen crystals (bottom). The
numerical results show the steady state heat diffusion of the system where the
temperature at the crystal boundaries is constant.

4. Discussion

Figure 4: The model and solver can
handle arbitrary crystal configurations
along with steady state velocities and
heat sources. This provides the tools
necessary to compare thermal properties
across various configurations.
Heat advection can be accurately mod-

eled in large micro-scale environments,
preserving the interaction between dis-
crete grains. The results can also be
applied to homogenization problems for
more accurate macro-scale simulations.

Already multiphase fluid flow can be accurately and
efficiently computed using traditional BEM. Using a
boundary method allows for the simulation of many
viscous crystals advecting through an infinite suspen-
sion fluid. By using DRBEM, this ability is extended
to the heat equation. The present research will al-
low for the simulation of a hydrothermal system with
hundreds of settling crystals advecting and thermally
interacting with the surrounding magma ocean.
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Figure 5: The thermal profiles for various crystal configurations.

When several crystals of the same size are grouped together, the

far field cooling effect is higher compared to one crystal cooling.
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