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Introduction

Physical Motivation

» Giant impact between early Earth and Mars sized object

» Generated massive amounts of heat, formed global “magma
ocean”
» Magma Ocean cooled partially by heat advection
» Cooling first occurred at outer interface of magma ocean
» Created dense, cold, crystals that settled into the ocean
» Crystals may have been able to effective cool magma ocean
at great depths
» Estimates on rate of cooling is not tight

» Provide more accurate insight into Earth’s early history
» Present rates of cooling of the planet
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Problem Geometry
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Governing Equation
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» Equation hold true for each crystal p = (1,..., P) and the
suspension fluid p = 0.
» Each domain has constant heat conductivity &

» BEM techniques exist for solving Stokes flow with multiple
viscous particles in an infinite suspension

» New derived method based on Dual Reciprocity Boundary
Element Method (DRBEM) for solving heat equation in
similar domain
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DRBEM

Boundary Conditions

» Between particle and suspension fluid
» Potential is continuous across boundary
» Flux is continuous across boundary
» Boundary conditions are enforced in the linear system
» The suspension fluid at infinity
» Regularity of solution required for unbounded DRBEM
problems
» Require solution to decay to zero sufficiently fast at infinity
» Boundary condition enforced by removing boundary
integral at infinity
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DRBEM

Dual Reciprocity Boundary Element Method

» Approximates residual term by linear combination of
Radial Basis Function (RBFs) such that

N+L
ou
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» The new approximated heat equation can now be written

N+L

PV =" VP p={0,1,...,P} (3)
j=1

» BEM is applied to LHS as usual as well as to the RHS
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DRBEM

Boundary Integral Equations
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» The boundary integral equation holds for each domain of
the problem

» The integral equation can be written as a linear system

HPyP — GPgP = (pr]p _ GPQP)/BP (5)
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DRBEM

Expanding the Coefficient Term

» Recall that

g = (FP)~Lh = (FP)~! <—§tup — VPV — VPVUP + bp) (6)

» VP and V" are diagonal matrices containing the velocities
computed from the Stokes flow equation

» The gradient of the solution can be approximated using
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DRBEM

Interaction Between Domains

HPuP — GPqP = (HPUP — GPQP) 3P (8)

» The RHS of the linear equation is now equivalent to the
domain integral of a source term of a Poisson equation that
closely approximates the original residual term

» Require residual approximation to have desired properties

» Source term is continuous between domains

» Potential associated with source term is continuous across
domains

» Flux associated with source term is continuous across
domains
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DRBEM

Interaction Between Domains

» The residual term is matches at the boundary nodes due to
collocation
» No guarantee that potential or flux match at boundary
nodes
» Add additional 3N, harmonic functions to the potential
approximation inside each particle
» Use extra degrees of freedom to match potential and flux at
boundary nodes
» Harmonic functions do not alter original residual
approximation
» Harmonic function wf satisfy

No+Lg Np+Lp 3Np
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DRBEM

Matching Particle and Suspension
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» Potential and flux is continuous across the boundary
» Each DRBEM linear system yields two equations
» Solve first for the flux
» Plug into second to relate boundary potentials to interior
potentials
» Match fluxes across boundary to match boundary nodes
from the particles with those on the suspension

Dual Reciprocity Boundary Element Method for Geophysical Simulations



Radial Basis Functions (RBFs)

» Augmented Thin Plate Splines RBFs are used inside

particles 1 A
A r*lnr r
fj = T‘]2- hl?“j 9j = 16 — @ (11)

» Continuously differentiable
» Augmented polynomial guarantees existence of solution
» Numerically stable and robust
» Loefller-Mansur RBFs are used in the suspension
2c—rj A c+2r;
fi=i i 0j =55 (12)
(rj +c) 2(rj +¢)
» Decay sufficiently to meet regularity requirements at infinity
» Not differential at » = 0 (bounded but undefined)
» Depends on parameter ¢ that must be prescribed a priori
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Numerical Methods

Interpolation

» Boundary is interpolated using cubic splines
» Can be done individually for each particle in O(N) time
» Approximated boundary is C? allows for unit normal
defined everywhere

» Non-fundamental solution functions approximated in
integrals by linear Lagrange interpolation
» More accurate than constant value approximation
» Requires extra integration, but no work for computing
interpolation functions
» Allows for separation of fundamental solution integrals and
functions in linear system formulation
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Numerical Methods

Standard Integration

» Gaussian Quadrature

» Handles standard, finite integrals with finite integrands
FEight point quadrature for high accuracy

Boundary element is interpolated at local quadrature points
Function is evaluated at global quadrature nodes

Allows for high precision
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Numerical Methods

Singular Integration

» Weakly singular integrals

» Finite integrals with unbounded integrands
» Ex: In(r) in R? problems and 1/r in R3
» Strongly singular integrals
» Unbounded integrals with unbounded integrands
» Finite in the Cauchy Principal Value sense
» Ex: 1/r in R? and 1/7? in R?
» Evaluation using Radial Integration Method (RIM2D)

» Finite part of integrand expanded as power series in r, the
distance from the singularity

» Singular part of integrand and integration variable
transformed in terms of r

» Results in evaluation of finite expressions
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Problem Outline

» Simulate cooling of one and three particles

» All problems start with temperature § = 0 in the
suspension and ¢ = 1 in the particles

» Time steps are sufficiently small to satisfy the CFL stability
conditions
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Validation For One Particle

Relative Iog10 L2 Error

on boundary

Error with fixed number of interior nodes, L
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Validation For One Particle

Error with fixed number of boundary nodes, N
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Introduction Problem BFs Numerical Methods Results Conclusion

Results for Three Particles

Time t=0.400000
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Introduction Problem BFs Numerical Methods Results Conclusion

Results for Three Particles

Time t=1.200000
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Introduction Problem BFs Numerical Methods Results Conclusion

Results for Three Particles

Time t=3.600000
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Challenges

» Currently implemented as direct method

» Must invert a matrix directly — O(N*4)

» Investigating sparse RBFs and fast methods (ACA,FMM)
» Domain RBFs contain parameter c

» Too low and the method does not converge
» Too high and the method becomes unstable

» LM RBFs cover “finite” amount of suspension
» Decay very rapidly
» Only approximate near computational nodes
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Final Remarks

» New variation of the Dual Reciprocity Boundary Element
Method will allow for accurate simulation of viscous
particles settling into a suspension fluid

» Will be used to help find restraints on parameters needed
to find answers about the early history of the planet

» Method can be applied to many other application areas
that involve two phase fluid flow in infinite domains
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Thank You

Questions?
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