'General position results on uniqueness of nonrandomized Group-sequential decision procedures in Clinical Trials

Eric Slud, UMCP

OUTLINE

I. Two-Sample Clinical Trial Statistics

A. Large-sample background

B. Loss-functions & constraints on actions

II. Decision Theory Formulation

III. General Two-look Optimized Plans

A. Reductions & results

B. Computed Boundary – Example

C. Role of uniqueness & nonrandomized solutions

IV. Random Perturbations of Loss Functions

A. General result on a.s. unique minima

B. Proof Sketch: a.s. unique optimal plans

Joint work with Eric Leifer, NHLBI.

TWO-SAMPLE CLINICAL TRIAL STATISTICS

Data format : $(E_i, T_i^*, \Delta_i^*, Z_i, i = 1, \ldots, N_A(\tau))$ for analysis at times t_* .

 E_i entry-times, N_A arrival-counting, τ accrual-horizon

 X_i failure time, C_i indep. right-cens., Z_i trt. gp. $(X_i, C_i \text{ cond. indep. given } Z_i \& \text{ strat. variable } V_i)$ $T_i^* = X_i \land C_i \land (t_* - E_i) , \ \Delta_i = I_{[X_i \leq C_i \land (t_* - E_i]})$

PROBLEM: test H_0 : $S_{X|Z}(t|z) \equiv S_X(t)$, z = 0, 1with multiple interim looks & experimentwise validity.

TEST STATISTIC: for look at t_* , define $Y_z^*(s) = \sum_j I_{[Z_j=z, T_j^* \ge s]}, \quad Y^*(s) = Y_1^*(s) + Y_0^*(s) \quad at\text{-risk}$ $M(t_*) = -\sum_i \int K(s, \hat{S}_X(s)) \{Z_i - \frac{Y_1^*(T_i^* \land s)}{Y^*(T_i^* \land s)}\} \Delta_i^* dI_{[T_i \le s]}$ asympt. indep. incr., with estimated variance $\hat{V}(t_*) =$

$$\sum_{i} \int K^{2}(s, \hat{S}_{X}(s)) \{ \frac{Y_{1}^{*}(T_{i}^{*} \wedge s)Y_{0}^{*}(T_{i}^{*} \wedge s)}{Y^{*}(T_{i}^{*} \wedge s)} \} \Delta_{i}^{*} dI_{[T_{i} \leq s]}$$

Reject if $\frac{M(t_*)}{\sqrt{\hat{V}(t_*)}} \ge b(t_*)$, **Accept** if $\le a(t_*)$

Abstracted Asymptotic Problem

Most methods rely on asymptotically Gaussian timeindexed statistic-numerator $n^{-1/2} M(t)$ with indep. incr.'s, and variance function V(t) to be estimated in real or information time.

 $V(t) \text{ in } H_0 \text{ is functional of } (S_X, S_{C|Z}, \Lambda_A \equiv E(N_A))$ $\int K^2(S_X(s)) \frac{p(1-p)\Lambda_A(t-s)S_{C|Z}(s|1)S_{C|Z}(s|0)}{\Lambda_A(t)(p(S_{C|Z}(s|1)+(1-p)S_{C|Z}(s|0))} dF_X(s)$

Control parameters: At each $t = t_k$, can choose $t_{k+1}, a_{k+1}, b_{k+1}$

PROBLEM: To optimize expected Loss or Cost over times and cutoffs while maintaining overall nominal significance level.

MAIN COMPUTATIONAL METHOD of optimizing boundaries is parametric search for parametric boundary classes, or **backward induction**.

DECISION-THEORY INGREDIENTS

Actions: look-times t_{k*} and boundaries $b_{k*} = b(t_*)$ for $W/\hat{V}^{1/2}$ — for now consider only upper rejection boundary

Prior: $\pi(\vartheta)$ density for group-difference log hazard ratio parameter ϑ (within semiparametric model).

Losses: costs of experimentation $c_1(t, \vartheta)$, wrong decision $c_2(\vartheta)$, late correct decision $c_3(t, \vartheta)$,

these loss elements introduced in Leifer (2000) thesis. Costs are economic within-trial, ethical within-trial, and economic after-trial.

IN 2-LOOK TRIALS, ADAPTIVE ACTIONS ARE:

- t_1 constant depending on prior & losses
- Followup time $t_2 = t_2(W(t_1), t_1)$ which if $= t_1$ indicates imediate Reject or Accept, and
- final boundary: reject iff $W(t_2) \ge b(t_2, t_1, W(t_1))$

More on Decision Theory Problem

- (I) state-of-nature parameter $\vartheta \in \mathbf{R}$, *target* parameter $z = \gamma(\vartheta)$ (= ϑ in estimation, $I[\vartheta \leq 0]$ in testing), and prior prob. π on Θ
- (II) action-space

$$\mathcal{A} = \{ (\underline{t}, a) : \underline{t} = (t_1, \dots, t_K), \\ 0 \le t_1 \le \dots \le t_K \le T, \ a \in \gamma(\Theta) \}$$

- (III) observable process $\mathbf{W} = (W(x), 0 \leq x \leq T)$ Wiener process with drift ϑ , and suff. stat. $W(\tau)$ for data up to stopping-time τ , and *auxiliary randomization* r.v. $U \sim \text{Unif}[0, 1]$ independent of \mathbf{W}
- (IV) strategies consist of: increasing nonnegative stoppingtime random variables $\underline{\tau} = (\tau_1, \ldots, \tau_K)$

$$0 \le \tau_1 \le \tau_2 \le \dots \le \tau_K \le T \quad a.s.$$

satisfying 'causality' restrictions on measurability,

$$[\tau_j \le x] \in \sigma(\tau_i, \ i < j ; \ W(u), \ u \le x ; \ U),$$

and terminal action r.v. $a \in \gamma(\Theta)$ meas. wrt $(W(x), x \leq t_K)$ and U

(V) a loss-function $L(\underline{t}, a, \vartheta, \lambda)$ depending on looktimes \underline{t} only as smooth fcn of terminal time t_K , with Lagrange multipliers λ_0, λ_1

 $L(\underline{t}, a, \vartheta, \lambda) = C(t_K, a, z) + \lambda_0 a \, \delta_{\vartheta, 0} + \lambda_1 (1-a) \, \delta_{\vartheta, \vartheta_1}$ where $z = I_{[\vartheta \le 0]}, \quad \vartheta_1 > 0$ and $C(t, a, z) = c_1(t, \vartheta) + I_{[z \neq a]} c_2(\vartheta) + I_{[z=a]} c_3(t, \vartheta)$ and $c_i(\cdot, \vartheta) \nearrow, \quad c_3(t, \vartheta) \le c_2(\vartheta).$

(VI) risk function to be minimized over $d = (\underline{\tau}, a)$ is

$$r(d,\lambda) = \int_{\Theta} E_{\vartheta} L(\underline{\tau},\alpha,\vartheta,\lambda) \ d\pi(\vartheta) \qquad (1)$$

NOTE: For terminal time $\tau_K = s$ and data history $(W(u), u \leq s)$, there exists unique optimal terminal action $I_{[W(s)\geq w(s)]}$, with $w(\cdot) = w(\cdot, \lambda_0, \lambda_1)$ uniquely determined by

$$\int e^{\theta w(y) - \theta^2 y/2} g_1(y, \vartheta, \lambda_0, \lambda_1) d\pi(\theta) = 0$$

where

$$g_1(y) = (c_2(\theta) - c_3(y, \theta)) \left(2I_{[\theta \le 0]} - 1\right) + \frac{\lambda_0}{\pi_0} I_{[\theta = 0]} - \frac{\lambda_1}{\pi_1} I_{[\theta = \theta_1]} - \frac{\lambda_1$$

Optimizing the Decision Rule

We know that at the final look-time, the best decision is to **Reject** when $W(s) \ge w(s)$, w computed uniquely from s, λ_0, λ_1 .

Now let t_1 be fixed and imagine $W(t_1)/\sqrt{t_1} = x$ observed. Can express conditional expected final loss at time $t_1 + s$ in form

$$r_{2}(t_{1}, x, s) \equiv \int R(t_{1}, x, s, \vartheta) d\pi(\vartheta)$$

= $\int e^{\theta x \sqrt{t_{1}} - \theta^{2} t_{1}/2} \{a_{0}(t_{1} + s, \vartheta) + a_{1}(t_{1} + s, \vartheta) \cdot (1 - \Phi \left(\frac{w(t_{1} + s) - x \sqrt{t_{1}}}{\sqrt{s}} - \vartheta \sqrt{s}\right)\right)\} d\pi(\theta)$

where

$$a_0(t,\vartheta) = c_1(t,\vartheta) + c_2(\vartheta) I_{[\vartheta>0]} + \frac{\lambda_1}{\pi_1} I_{[\theta=\theta_1]} + c_3(t,\vartheta) I_{[\vartheta\leq0]}$$

Backward Induction Idea: if we can uniquely optimize $r_2(t_1, x, s)$ in $s = s(t_1, x)$ uniquely (a.e. x), and then choose t_1 uniquely to minimize

$$\int \int R(t_1, x, s(t_1, x), \vartheta) \frac{1}{\sqrt{2\pi}} e^{-(x-\vartheta\sqrt{t_1})^2/2} dx d\pi(\vartheta)$$

Optimizing, Continued

then we would have specified the unique nonrandomized optimal decision rule through the constant t_1 and functions $s(t_1, x)$, $w(t_1 + s)$.

BUT for these general loss functions there is no hope of explicit formulas, and even showing unique optima is complicated by the form of optimal s which will generally be 0 on the complement of some interval.

This behavior is unavoidable, reflecting the necessity to stop after one look at the data at time t_1 if the observed statistic value $W(t_1)$ is too extreme !

We show this next is a computed example.

Optimal Boundary in 2-Look Example

Data: $W(t) = B(t_i) + \vartheta t_i$, i = 1, 2 t_1 is fixed in advance, continuation-time $t_2 - t_1 \ge 0$ is chosen as function of $W(t_1)$.

Loss for stopping at τ with Rejection indicator z:

$$c_1(\tau,\vartheta) + c_3(\tau,\vartheta) + z \left(c_2(\vartheta) - c_3(\tau,\vartheta)\right) \left(2I_{[\vartheta \le 0]} - 1\right)$$

Problem to find min-risk test under prior $\pi(d\vartheta)$, with sig. level $\leq \alpha$ and type II error at $\vartheta_1 \leq \beta$.

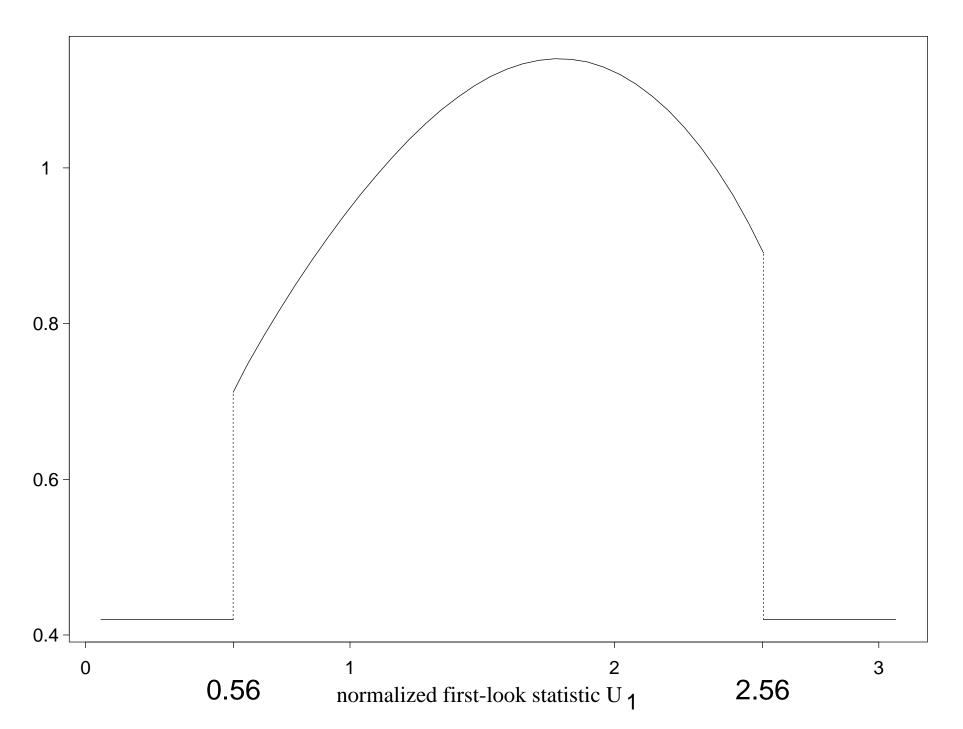
Under regularity conditions on loss elements (*piece-wise smoothness*, $c_2 \geq c_3$, $c_1 \nearrow \infty$) and prior $\pi(d\vartheta)$ assigning positive mass to neighborhoods of $0, \vartheta_1 > 0$:

can show that optimal procedures are nonrandomized (w.p.1 after smallrandom perturbation of c_1) and unique, rejecting for $W(t_2) \geq b_2(t_1, t_2, W(t_1)) \sqrt{V(t_2)}$.

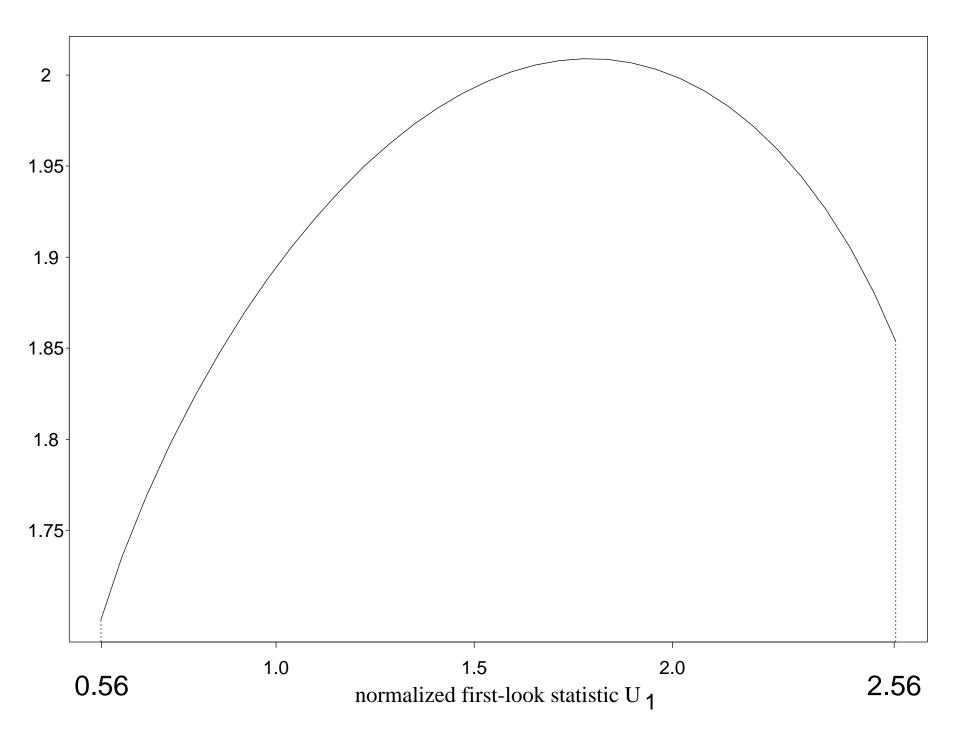
Example. $\alpha = .025, \ \beta = .1, \ \vartheta_1 = log(1.5),$ time scaled so $\tau_{fix} = 1$. Optimized $t_1 = .42 \cdot \tau_{fix}$.

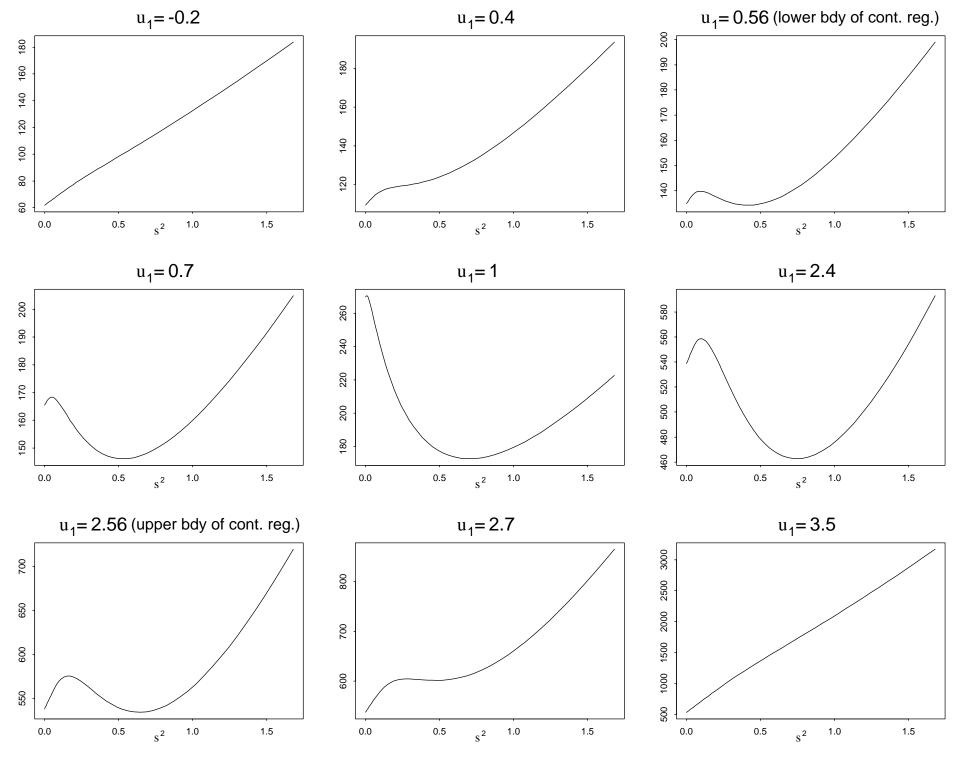
$e^{\vartheta} = \text{hazard ratio}$	0.9	1.0	1.25	1.5	1.75
$1.51 \cdot \pi(\{\vartheta\})$	0.2	1.0	0.2	0.1	0.01
$c_1(t, \vartheta)$	t	t	t	t	t
$c_2(artheta)$	200	100	50	250	500

Total Trial Time



Second Look Critical Value





LEMMA ON UNIQUE RANDOM-FUNCTION MINIMA

Lemma 1 (extending Bulinskaya 1961) Let K be a fixed compact interval in **R**, and suppose that g_1, g_2 are fixed smooth real-valued functions on K, with $\inf_K g_2 > 0$. Let $\zeta(\cdot) = \zeta(\cdot, \omega)$ be a random process on K with sample paths a.s. in $C^2(K)$ such that for all $\delta > 0$, the joint density of $(\zeta(s_1), \zeta'(s_1), \zeta(s_2), \zeta'(s_2))$ (with respect to Lebesgue measure, on \mathbf{R}^4) is uniformly bounded, uniformly over all $s_1, s_2 \in K$ for which $|s_1 - s_2| \geq \delta$. Then

(i) With probability 1 (ω), there do not exist distinct elements $s_1, s_2 \in K$ such that the sample path of the function $\rho(s) \equiv g_1(s) + g_2(s)\zeta(s)$ satisfies $\rho'(s_1) = \rho'(s_2) = 0$ along with $\rho(s_1) = \rho(s_2)$, and

(ii) Under the assumptions above, with probability 1, the number of zeroes of ρ' on K is finite, and $\rho''(s) \neq 0$ at all values of s for which $\rho'(s) = 0$.

Corollary. Analogous result for minima wrt s with functions $g_j(t_1, x, s)$ holds a.e. in (t_1, x, ω) .

Via IMPLICIT FUNCTION THEOREM for minimizer $s = s(t_1, x)$ find s a.e. smooth in its arguments, a.s. for argument ω .

FURTHER STEPS TO ESTABLISH A.S. UNIQUE RULE

Want to substitute $s = s(t_1, x)$ and integrate out standardized variable $x = W(t_1)/\sqrt{t_1}$ to get smooth time- t_1 risk $r_1(t_1)$ except that this function s is only a.e. defined and smooth.

Introduce technical assumption for small $\epsilon > 0$ that

 $t_2 \ge t_1 + \epsilon$ whenever $t_2 > t_1$

(No real loss in generality: can likely prove it directly.)

Remaining proof-step to prove $r_1(t_1)$ smooth: for $V \sim \text{Unif}[0, \epsilon)$ indep. of other data,

$$r_1(t_1) = \min \left(\frac{E(r_2(t_1, W(t_1)/\sqrt{t_1}, 0+))}{\sqrt{t_1}, 0+} \right),$$

$$E\left(r_2(t_1+V, \frac{W(t_1+V)}{\sqrt{t_1+V}}, s(t_1+V, \frac{W(t_1+V)}{\sqrt{t_1+V}}) \right)$$

Last expectations with respect to measure on $(\vartheta, W(\cdot))$ given by $\int_A P_{\vartheta}(dW) d\pi(\vartheta)$.

Overall results hold a.s. (ω) for a.e. (λ_0, λ_1). But that seems to be enough.

References

For clinical-trial large sample theory:

Tsiatis (1982), Andersen & Gill (1982), Sellke & Siegmund (1983), Slud (1984)

For group-sequential boundaries:

Pocock (1977), O'Brien & Fleming (1979), Slud & Wei (1982), Lan & DeMets (1983), Pampallona & Tsiatis (1994) plus others

For adaptive modifications:

Burman & Sondesson (2006, current **Biometrics**)

For decision-theoretic formulations:

Anscombe (1963), Colton (1963), Berger (1985 book), Siegmund (1985 book), Jennison (1987), Freedman & Spiegelhalter (1989), Leifer (2000, thesis)

For level-crossings theorems:

Bulinskaya (1962) cited in Cramer and Leadbetter (1967) Stationary and Related Stochastic Processes book