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Failure Modes and Markers

Study probability distribution of Time to Failure, where Failure

is interpreted (or defined) as time S for Degradation Process

X(t) to cross a Threshold a .

Degradation may be latent (unobservable) or else prohibitively

difficult or expensive to measure.

So model in terms of Marker variables Y (t) easier to measure.

Example, in ball bearing fans.

• degradation: surface defect or roughness of bearing balls.

• marker: Vibration (Hz).
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Failure Mechanisms in Electronics

Failures in electronics can be result of one or more failure mechanisms

I Overstress mechanisms (stress exceeds item strength; failure is
sudden)

I Wearout mechanisms (Accumulation of damage with repeated
stress)

Examples of wearout failure mechanisms

I Mechanical - Fatigue, Creep, Wear

I Electrical - Electromigration

I Chemical - Corrosion, dendrite growth, intermetallic growth

V. Sotiris University of Maryland, College Park, MD 5 / 30



,

About Myself
OBJECTIVES

INTRODUCTION & BACKGROUND
MODEL

APPLICATION AREA
PHYSICS OF FAILURE
DATA STRUCTURE

Degradation Process

Interested in the evolution of latent degradation processes: underlying
unobserved processes that act on an item and eventually cause it to fail

Examples of latent degradation variables in electronics

I length of a crack in a solder joint

I corrosion level of solder joints

I random effect

Time-to-failure *

is determined by the first time the degradation variable first crosses to a
critical level or threshold (random or fixed)
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Failure Mechanism Failure Sites Failure Causes Failure Models

Fatigue

Die attach, Wirebond/TAB, 

Solder leads, Bond pads,

Traces, Vias/PTHs, 

Interfaces

Cyclic Deformations

(∆ T, ∆ H, ∆ V)

Nonlinear Power

Law (Coffin-Manson)

Corrosion Metallizations M, ∆V, T, chemical Eyring (Howard)

Electromigration Metallizations T, J Eyring (Black)

Conductive Filament 

Formation 

Between Metallizations M, ΛV Power Law (Rudra)

Stress Driven

Diffusion Voiding

Metal Traces σ, T Eyring (Okabayashi)

Time Dependent    

Dielectric Breakdown

Dielectric layers V, T Arrhenius (Fowler-

Nordheim)                
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Degradation Variables

• Examples of degradation variables: 

– Length of a crack, corrosion level, surface roughness of bearing balls, 

light intensity of light emitting diodes

• Degradation variables are often not observable (latent)

– In systems with complex electronics, no one variable is known to 

represent degradation 

– In electronic components, a degradation variable may not be 

measurable

• When degradation is latent, predictions must be based on 

marker (surrogate) variables
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Marker Variables

• A marker is a random variable, which

– Covaries with degradation and assists in tracking its progress

– Basis for inference about degradation and its progression towards a 

threshold

– Offers scientific insight into the forces driving degradation

• Example of marker variables

– In ball bearing fans, the degradation variable may be the surface 

defect/roughness of the bearing balls. Possible markers: 

• Vibration (Hz)

– In a laptop computer, the degradation variable(s) may not be known. 

Possible markers:

• Temperature of motherboard

• Fan speed

• etc



Data Structure

Si = failure time for unit i (latent)

Ti = Si ∧ τ , (τ = progressive censoring time)

Zi(tj ∧ Ti) = covariates , j = 1, . . . , k

Xi(Ti) = terminal degradation (= a if Si ≤ τ)

Yi(tj ∧ Ti) = marker, longitudinal obs. until terminal time

Main issues for this talk:

Yi(Ti) generally available, Xi(Si) = a implicit

Augmented data consist of values Xi(τ) for τ < Si

and Y (tj) for tj < Ti



Bivariate Process Model

(X(t), Y (t)) bivariate Wiener process, indep. increments

X(t) ∼ N (νx, σ2
x t) , S ≡ inf{t : X(t) = a}

Y (t) ∼ N (νy, σ2
y t)

Y (t) − ρ
σy

σx
X(t) indep. of X(t) as processes

Model as in Whitmore, Crowder and Lawless (1998); Censored

Data and longitudinal data as in Lee and Whitmore (2007).

NB. Normality of increments of Y (·) can be weakened.





Reflection Principle & density for (X(t), I(S > t))

Say X(0) = 0 < a, s < t, x < a , so a < 2a − x :

fX(t)|S(x|s; νx) = exp ((νx/σ2
x) (x − νx(t − s)/2)) fX(t)|S(x|s; 0)

= exp ((νx/σ2
x) (x − νx(t − s)/2)) fX(t)|S(2a − x|s; 0)

= exp ((νx/σ2
x) (x − νx(t − s)/2)) fX(t)|S(2a − x|s; 0)

= e2νx(x−a)/σ2
x fX(t)|S(2a − x|s; νx)

Integrate product by fS(s) ds over s < t to conclude:

fX(t),I(S<t)(x, 1) = e2νx(x−a)/σ2
x fX(t)(2a − x)



Parametric Likelihoods

Parameters (νx, σx, νy, σy, ρ): put c = ρσy/σx , a ≡ 1

(Terminal-data-only case: k = 1, t1 = τ) δi ≡ I(Si ≤ τ)

n∏

i=1

[fS,Y (S)(Si, Yi(Si))
δi fX(τ), Y (τ), I(Si≤τ)(Xi(τ), Yi(τ),0)1−δi]

fS(s) Inverse Gaussian, fY (S)|S(x|s) = fY (s)−ca(y − ca)

fX(τ),Y (τ),I(Si≤τ)(x, y, 0) =

fY (τ)−cX(τ)(y − cx) · {fX(τ)(x) − fX(τ),I(S≤τ)(x, 1)}

last density on previous slide via Reflection Principle



Parametric Likelihood, continued

(Longitudinal-data case: k > 1, tk = τ)

(X(tj), Y (tj), I(S > tj)) Markov Sequence, j = 1, . . . , k

{Y (tj) − cX(tj)}k
j=1 indep. of {(X(tj), I(S > tj))}k

j=1

fX(t+b,I(S>t+b)| X(t),I(S>t)(u + x, 1|u,1) = fX(b),I(S>b)(x, 1)

process re-started at X(t) = u : Markov property

Density obtained via Reflection Principle on earlier slide



Information comparisons

Parameters obtained via Likelihood Maximization

approx. large-sample variances obtained as

inverse of empirical Fisher Information ( −∇∇tr logLik)−1

Compare: (TRM) terminal-marker only T, Y (T )

versus: (TRM+D) plus terminal-degradation T, Y (T ), X(T )

vsersus: (LongM) plus longitudinal markers T, Y (tj ∧T ), X(T )



Variance & ARE Comparisons

Statistic of interest: expected failure time µX = a/νx

Simulated data: (νx, σx, νy, σy) = (.1, .1, 1.0, .4), n = 40

R = 500 replications for TRM, LongM, k=2, and TRM+D

Varied ρ, τ for effect on Variance-ratio, LongM vs. TRM+D
(Here k = 2, t1 = τ/2, t2 = τ .)

rho tau= 4 7 10 13

0 .999 1.000 1.000 1.000

0.3 .987 0.993 0.997 1.001

0.6 .934 0.961 0.983 1.002

0.9 .803 0.856 0.936 0.987

On next slide: TRM+D vs. TRM
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Relative Efficiency

• A more quantitative measure of comparison is the asymptotic 

relative efficiency (ARE) in estimating 
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Predictive Inference

Consider two types of predictive inference equations that exploit marker
information, the second being of primary interest

Maximum likelihood estimate (MLE) vector of model parameters:

θ̂ = (σ̂X , σ̂Y , ν̂X , ν̂Y , ρ̂, â)

Prediction of the degradation level: X

P (X(t) = x|Y (t) = y, S > t) = g(θ̂; t) (1)

Prediction of failure time: S

P (S = s|Y (t) = y, S > t) = h(θ̂; t) (2)
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Prediction Results

• For test device surviving at time t given a marker observation 

y(t)=y, we predict its degradation distribution
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Prediction Results

• For test device surviving at time t given a marker observation 

y(t)=y, we predict its future failure-time distribution

Prediction uncertainty decreases

* Actual failure time



Directions of Future Work

• systematic examination of variances of parameter estimators

on ρ and τ , for TRM vs. TRM+D vs. LongM data-types.

• analogous models, estimates, and variance comparisons with

random thresholds a.

• regression models based on external covariates Zi for νx, νy.

• other distributional forms of independent-increments processes

Y (·) − c X(·) indep. of X(·)

• possibility of nonlinearly transforming marker measurements

to make these models fit better.



References

Chhikara, R.S. & Folks, L. (1989): Inverse Gaussian distribution

G. Whitmore, M. Crowder & J. Lawless (1998). Marker process,

bivariate Wiener.

Vichare, N. & Pecht, M.. (2006). Prognostics and Health Man-

agement of Electronics. EEE Transactions on Components and

Packaging Technologies, 29, 1, 1521–3331

Lee, M.-L. & Whitmore, G. (2007). Threshold Regression ...

Statist. Sci.




