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Data Setting

Data are {Xi, Yi : i ∈ S} , Xi ∈ 1 × Rp−1 , Yi ∈ R

S ⊂ U is a probability sample drawn from pop’n list U with

known inclusion probabilities πi, and design weights wo
i = 1/πi

Objective: to estimate unknown total tY =
∑

i∈U Yi by an

estimator
∑

i∈S wi Yi which is unbiased (nearly, in large

samples), with variance as small as possible

where final weights wi are modified from wo
i using relation-

ships between Xi for i ∈ S and known population totals

t∗X =
∑

i∈U Xi
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Idea of Survey Calibration

To improve on Horvitz-Thompson Estimator t̂
HT

Y =
∑

i∈S wo
i Yi

Estimate tY =
∑

i∈U Yi by t̂Y =
∑

i∈S wi Yi

where {wi : Ri = 1} minimizes Loss =
∑

i∈S (wi −wo
i )

2 /wo
i

subject to calibration constraints
∑

i∈S wi Xi = t∗X .

Equivalent to Generalized Regression Estimators for Y on X.
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Survey (Weighted Least Squares) Regression

Pop’n-Level Least Squares Equation
∑

U Xi (Yi − X′
iβ) = 0

Estimated and solved in sample as:
∑

i∈S wo
i Xi (Yi−X′

iβ) = 0

Regression survey estimator

t̂Y = (
∑

i∈U Xi)
′ β̂ +

∑
i∈S wo

i (Yi − X ′
iβ̂) = t∗X

′ β̂

requires knowledge of population totals t∗X .

Here β̂ =
( ∑

i∈S wo
i Xi X

′
i

)−1 ∑
i∈S wo

i Xi Yi

Folklore: (Fuller 2009) Var(t̂Y ) is large when dim(Xi) is.
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Why Not Linear Regression
Using all p Predictors?

• p is often large, and corresponding weights wi from using all

will vary too much: an overfitting problem.

• not all of the elements t∗X are known to high accuracy

• the practical requirement to equate
∑

i∈S wi Xi = t∗X is not

strong in all entries, only in a relative few.
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Variable Selection in Regression

In ordinary least squares regression this is a classic problem

when p is large but � n = |S|. Some approaches, translated

to survey notation:

Ridge Regression: minβ∈Rp

{ ∑
i∈S wo

i (Yi − X′
i β)2 + λ‖β‖22

}

Mallows Cp : mindim(X̃i)=q≤p

{∑
S wo

i (Yi−β̃′X̃i)
2

∑
S wo

i (Yi−β̂′Xi)2
− n + 2q

}

LASSO : minβ∈Rp

{ ∑
i∈S wo

i (Yi − X′
i β)2 + λ

∑p
j=1 |βj|

}

Sequential forward and backward variable selection (greedy)

algorithms often used to simply the combinatorics of search.
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Quadratic Programming Optimization Approach

Explicitly subdivide the n×p design matrix X with rows Xi, i ∈ S

into n × pk blocks, X(k), k = 0, . . . , K for which different

calibration accuracies are appropriate, with
∑K

k=0 pk = p, and

min
w

{ ∑

i∈S

(wi − wo
i )

2

2wo
i

+
K∑

k=1

ak ‖
∑

S

wiX
(k)
i − t∗

X(k)‖22
}

subject to
∑

i∈S wi X
(0)
i = t∗

X(0) and c1 ≤ wi/wo
i ≤ c2
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Research Problems for the Project

• What is the interplay between dimension of q ≤ p of selected

set of regressors required to include a specified set with n × p0

design matrix X(0) ?

• Study the behavior of variance of survey estimators based

on these variable selection ideas on simulated survey datasets

(generated via pseudo-random generators from known distribu-

tions), obtaining formulas and bounds where possible.

• Consider and devise new variable selection strategies for the

survey setting.

• Analyze real survey data from public-use survey data files

using these ideas.
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