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Introduction

The model we will be analyzing is known as an additive partially

linear model. It involves relating a response Y 2 Rn to a set of

covariates (X;Z) 2 Rnxp semiparametrically. We have X 2 Rnxq,

Z 2 Rnxr and p = q + r is the total number of covariates. The X

will be modeled in the regular linear fashion while Z will be

modeled using a nonparametric additive method.
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For each data point the model can be written as

Yi = Xi� + ��(Zi) + �i :

Here, ��(Zi) =
∑r

j=1 �j(Zi j), the �i have mean 0 and second

moment �2i = �2, and Xi and Zi denote the i
th row of X and Z

respectively.

If we de�ne ��i = ��(Zi) then the model can then be written in

matrix form

Y = X� +�+ e

with � = [��1 : : : �
�

n]
T .
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To complete our introduction, we will need to specify a type of

function estimator that will be best suited for our needs. In other

words, we need to �nd weights wnij such that

�̂�(Zj) =

n∑
i=1

wnij�
�(Zi)

in order to get a smooth estimate of each function ��. Many

such smoothers exist.

Some examples of weights for simple or common data smooths

are given in the next slide.
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1. k-Nearest Neighbor:

wnij =
1

k
� I(i 2 [j � k=2; j + k=2]; i 6= j)

with k < n and x1 < : : : < xn.

2. Kernel:

wnij = K(
xi � xj

h
)=

∑
l

K(
xl � xj

h
)

with K(�) a kernel function and h a bandwidth parameter.

3. Series:

wnij = pK(zj)
T (P TP )�pK(zi)

with pK(�) a vector of estimation functions, P the matrix of

all such vectors and K = K(n).

For additive partially linear models, it makes the most sense to

use the series estimator of the functions ��i .
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De�ne HA as the additive class of functions such that if

g; g0 2 HA,

1. g : Rr ! R

2. g(z) =
∑r

j=1 gj(zj) where gj(zj) is continuous on a compact

subset of R

3.
∑r

j=1 E[gj(zj)
2] <1

4. < g; g0 >= E[gg0]

5. gj(0) = 0 for j = 2; : : : ; r

The last requirement is needed so that estimation in our model

will be identi�able. For use of kernel estimators, the identi�ability

condition is usually Egj(zj) = 0; j = 2; : : : ; r . However, for series

estimation the condition above makes more sense.

Note that HA is an in�nite-dimensional Hilbert space and is

therefore not compact.



Estimation of the Parametric Component

Before estimating � we will need to come up with estimates for

��(z) for z 2 Rr . To estimate each �j(zj) we will use a linear

combination of functions p
Kj

j (zj) = [p
Kj

1j (zj) : : : p
Kj

Kj j
(zj)]

T . Here,

Kj is just the number of functions we are using to estimate �j(zj)

and each p term is a function of zj . If we let

pK(z)T = [pK1

1
(z1)

T : : : pKr
r (zr )

T ] then a linear combination of

pK(z)T estimates ��(z) for K =
∑

j Kj .

We know then that pK(z) 2 HA and that as minj(Kj)!1, 9 a

linear combination of pK(z), say p̂K(z), s.t. 8 � > 0,

E[(p̂K(Z)� g(Z))2] < �; 8 g 2 HA.
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Now if we let pj = [p
Kj

j (Z1j) : : : p
Kj

j (Znj)]
T 2 RnxKj and let

P = [p1 : : : pr ] 2 RnxK then P will be the matrix of all functions

that will estimate each �j(Zi j) and thus each ��i .

Recall our model in matrix form was

Y = X� +�+ e:

Then if we de�ne M = P (P TP )�P T 2 Rnxn and ~A = MA for any

matrix or vector A with n rows, we know by the de�nition of our

estimation functions in P that for large enough K, ~� is arbitrarily

close to �. Therefore, premultiplying our model by M gives us

~Y = ~X� + ~�+ ~e � ~X� +�+ ~e:
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Subtracting our original model from the one premultiplied by M,

we get

Y � ~Y = (X � ~X)� +�� ~� + e � ~e � (X � ~X)� + e � ~e:

Thus, we can obtain a least squares estimate of �

�̂ = [(X � ~X)T (X � ~X)]�(X � ~X)T (Y � ~Y )

where the generalized inverse becomes an inverse as minjKj !1
given certain conditions.



Estimation of the Nonparametric Component

Since Y �X�̂ � �, 8 z 2 Rr we can estimate ��(z) by

�̂�(z) = pK(z)T 
̂

where 
̂ = (P TP )�P T (Y �X�̂).

Again, the generalized inverse (P TP )� becomes an inverse

asymptotically under certain assumptions.
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Assumptions:

1. 8 i ; (Yi ; Xi ; Zi) are iid as (Y;X;Z) and (X;Z) is de�ned on a

compact subset of Rp with �(z) a bounded function and

E�2i <1
2. 8 K 9 a nonsingular B such that the smallest eigenvalue of

E[BpK(Z)pK(Z)TBT ] is bounded away from 0 uniformly in

K and 9 a sequence �0(K) such that

supz jjBpK(z)jj � �0(K) and (�0(K))2K=n ! 0

3. 9 �j > 0 such that supz jf (z)� pK(z)TBT
f j = O(
∑

j K
��j
j )

as minjKj !1 and
p
n(

∑
j K

��j
j )! 0

The �rst assumption is standard. The second assumption ensures

P TP is asymptotically nonsingular. The third assumption ensures

�j(zj) is arbitrarily close to its estimator p
Kj

j (zj)
T
j as Kj !1.
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Theorem

Under our assumptions

supz2Rr j�̂�(z)� ��(z)j = Op(�0(K))[

√
K

n
+

∑
j

K
��j
j ]:

Proof.

Li (2000).
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To prove e�ciency, we will �rst need to prove some preliminary

results.

De�ne �Ag as the projection of g onto HA. If we let � = E(XjZ)
then h = �A� 2 HA has the property that

E[(� � h)(� � h)T ]

= infg2HA
fE[(� � g)(� � g)T ]g

Recall that the Hilbert space HA is not compact, therefore we are

unable to use Weierstrass's Theorem to say that there is an

h 2 HA that attains this in�mum.
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Lemma

For � = E(XjZ), 9 h 2 HA such that h = �A� has the property

E[(� � h)(� � h)T ]

= infg2HA
fE[(� � g)(� � g)T ]g

Proof.

We will consider the case where Xi is univariate (q = 1) and there

are only two nonparametric components (r = 2). That is,

Yi = Xi� + �1(Zi1) + �2(Zi2) + �i :

A more general proof will follow the same arguments.
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If � 2 HA then set h = � and we are done.

We now consider the case where � =2 HA.

Let fajg11 , fbjg11 be complete base functions that can expand �1
and �2 respectively. Then fcjg11 = (a1; b1; a2; b2; : : :) is a

complete base function that can expand any �� = �1 + �2 2 HA.

WLOG assume fcjg is orthonormal. In other words, E[cicj ] = �i j .

Now let h = h1 + h2 =
∑

j cj�j where �j = E[�cj ] and let

� = � � h.
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Multiplying � = h + � by cj and taking expectation we have

�j = E[�cj ] = E[cj
∑
i

ci�i+cj�] =
∑
i

�i j�i+E[cj�] = �j+E[cj�]

Therefore 8 j ,

E[cj�] = 0 =) � ? fcjg =) � ? f 8 f 2 HA

Thus if h =
∑

j cj�j <1, then the fact that � = h + � for

� ? HA implies 9 h 2 HA that has the property

E[(� � h)2] = infg2HA
E[(� � g)2]:

But since E�2 <1, we have E[(h + �)2] = Eh2 + E�2.

=
∑

j �
2
j + E�2 <1 which implies h =

∑
j cj�j <1.
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Theorem

De�ne ui = Xi � �AXi and assume U = E[uiu
T
i ] is positive

de�nite. Then under our assumptions,

p
n(�̂ � �)! N(0; �2U�1)

in distribution and

�̂2Û�1 ! �2U�1

in probability where �̂2 = n�1
∑

i(yi �Xi �̂ � �̂�(Zi))
2 and

Û = n�1
∑

i(Xi � ~Xi)(Xi � ~Xi)
T .
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Outline of Proof.

(i)
p
n(�̂ � �)! N(0; �2U�1)

Recall that Xi = �i + vi = �i + hi + vi where E[vi jZi ] = 0,

hi = �A�i 2 HA and �i ? HA.

Also recall that �̂ = [(X � ~X)T (X � ~X)]�1(X � ~X)T (Y � ~Y )

asymptotically.

We write X � ~X = � + v + (h � ~h)� ~� � ~v and de�ne

SA;B = n�1
∑

i AB
T and SA = SA;A. Then if S�1

X� ~X
exists, since

SA;B+C = SA;B + SA;C we have

p
n(�̂ � �) = S�1

X� ~X
[
p
nSX� ~X;���~��+��~�]
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It can be shown with a little bit of detail that

1. SX� ~X = U + op(1)

2. SX� ~X;���~��
= op(n

�1=2)

3. SX� ~X;~� = op(n
�1=2)

4.
p
nSX� ~X;� ! N(0; �2U) in distribution

The �rst item can be proven taking

X � ~X = � + v + (h � ~h)� ~v � ~�

and showing that (h � ~h) = op(1); ~v = op(1) and ~� = op(1).

Thus, since � + v = u then X � ~X = u + op(1) and by LLN,

SX� ~X ! E[uuT ] = U.
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(i i) �̂2Û�1 ! �2U�1

In the previous part, it was stated that we can prove with a bit of

detail that Û = SX� ~X = U + op(1).

Since �̂ � � = Op(n
�1=2) and �̂�(Zi)� ��(Zi) = op(1) we see

that

�̂i � �i = Xi(� � �̂) + (��(Zi)� �̂�(Zi)) = op(1)

) �̂i = �i + op(1). By LLN, we see that n
�1

∑
i �̂
2
i ! E[�2i ] = �2,

thus �̂2Û�1 ! �2U�1.
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We now calculate the information in the parametric component.

In our problem we have

p(yi ; Xi ; Zi ;�; �
�) = yi �Xi� � ��(Zi)

Recall we have the de�nitions _̀
� = r� log[p(y ;X;Z;�; ��)] and

~̀
� = _̀

� � ���
_̀
�. We will use the relation

I(�) =

∫
~̀
�
~̀T
� dP

for the information in �.

Note that the projection operator ��� is the same as the previous

projection operator used �A since we are projecting our variable

into the space of additive functions.
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It can be seen through di�erentiation that _̀
� = ��1i Xi and thus

~̀
� = ��1i (Xi � �AXi) = ��1i ui .

Therefore the information in the parametric component is

I(�) =

∫
~̀
�
~̀T
� dP

=

∫
��2i uiu

T
i dP

= E[��2i ]E[uiu
T
i ] � [E�2i ]

�1E[uiu
T
i ] (1)

Where the inequality in (1) follows from Jensen's inequality.



E�ciency of the Estimator

Recall we de�ned E[uiu
T
i ] = U and E�2i = �2 meaning the

information in � is

I(�) � ��2U = [V ar(
p
n(�̂ � �))]�1

This is just the usual Fisher information inequality. However, due

to a result by Chamberlain (1992) it can be shown that for

� = E[p(yi ; Xi ; Zi ;�; �
�)2] and g�� = E[@p(yi ; Xi ; Zi ;�; �

�)=@��]

that

I(�) � E[( _̀� � g��h)��1( _̀� � g��h)T ]

8 h 2 HA. Thus letting h = �AXi and using the facts that

g�� = 1 and ��1 = ��2 we see that

I(�) � ��2E[uiu
T
i ]

meaning I(�) = ��2U = [V ar(
p
n(�̂ � �))]�1. Therefore �̂ is an

asymptotically e�cient estimator of �.



Applications

A popular application of these partially linear additive models is in

partially linear time series, particularly additive stochastic

regression mentioned in H�ardle, et al (2000). In it we assume

Yt = m(Ut) + �t =
∑
j

�j(Xtj) + g(Zt) + �t

with Zt 2 Rr . The partially linear additive model discussed in this

talk arises when we assume that some of the �j 's are related to

the Xtj 's linearly. Usually the function g is not assumed to be

additive.

Models of this type have important applications in economics.
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