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Introduction

The model we will be analyzing is known as an additive partially
linear model. It involves relating a response Y € R” to a set of
covariates (X, Z) € R™P semiparametrically. We have X € R™9,
Z € R™ and p = g + r is the total number of covariates. The X
will be modeled in the regular linear fashion while Z will be
modeled using a nonparametric additive method.



Introduction

For each data point the model can be written as

Yi = XiB+ ¢*(Z)) + €.

Here, ¢*(Z;) = >/, ¢;(Zj;), the €; have mean 0 and second
moment o2 = 02, and X; and Z; denote the /*" row of X and Z
respectively.

If we define ¢ = ¢*(Z;) then the model can then be written in

matrix form

Y=XB+DP+e
with & = [¢7 ... ¢;]7.



Introduction

To complete our introduction, we will need to specify a type of
function estimator that will be best suited for our needs. In other
words, we need to find weights w,;; such that

$*(Z) = waij¢™(Z)
i=1

in order to get a smooth estimate of each function ¢*. Many
such smoothers exist.

Some examples of weights for simple or common data smooths
are given in the next slide.



Introduction

1. k-Nearest Neighbor:

Wn,-j:%*/(/eU—k/2,1+/</2],/7£j)

with kK < nand x3 <...<x,.
2. Kernel:

X,'—XJ' X/—XJ'
wpij = K( p )/Z/:K( p )

with K(-) a kernel function and h a bandwidth parameter.
3. Series:
waij = p* ()T (PTP)"p"(2)
with p”(-) a vector of estimation functions, P the matrix of
all such vectors and K = K(n).

For additive partially linear models, it makes the most sense to
use the series estimator of the functions ¢7.



Estimation of the Parametric Component

Define Hp as the additive class of functions such that if

9.9' € Ha,

.g:R" =R

2. 9(z) = ijl 9,(z;) where g;(z;) is continuous on a compact
subset of R

3. Yjo1 Elgi(7)?] < o0

4. <g.9 >=Elg9]

5. gi(0)=0forj=2,..., r

=

The last requirement is needed so that estimation in our model
will be identifiable. For use of kernel estimators, the identifiability
condition is usually Egj(z) =0,/ =2, ..., r. However, for series
estimation the condition above makes more sense.

Note that H,4 is an infinite-dimensional Hilbert space and is
therefore not compact.



Estimation of the Parametric Component

Before estimating B we will need to come up with estimates for
¢*(z) for z € R". To estimate each ¢;(z;) we will use a linear
combination of functions pJKj(zj) = [pff(zj) .. pgj(zj)]T. Here,
K; is just the number of functions we are using to estimate ¢;(z;)
and each p term is a function of z;. If we let
pK(2)T = [pf*(21)T ... pKr(2)7] then a linear combination of
pK(z)" estimates ¢*(2) for K = 3, K.

We know then that pX(z) € Hu and that as min;(K;) — oo, 3 a

linear combination of p”(z), say p¥(z), s.t. ¥ € > 0,
E[(p"(Z) = 9(2))’] <€, ¥ g € Ha.



Estimation of the Parametric Component

Now if we let p; = [/ (Zy)) ...} (Zo)]” € R and let

P =[p1...p/] € R™X then P will be the matrix of all functions
that will estimate each ¢;(Z;;) and thus each ¢7.

Recall our model in matrix form was

Y=XB+d+e

Then if we define M = P(PTP)~PT € R™" and A = MA for any
matrix or vector A with n rows, we know by the definition of our
estimation functions in P that for large enough K, ® is arbitrarily
close to ®. Therefore, premultiplying our model by M gives us

Y=XB+P+ExXB+P+E.



Estimation of the Parametric Component

Subtracting our original model from the one premultiplied by M,
we get
Y- V=(X-X)B+d-d+e—&x(X-X)B+e—é.
Thus, we can obtain a least squares estimate of 8
B=1X-X)T (X=X (X=X)(v-Y)

where the generalized inverse becomes an inverse as min;K; — oo
given certain conditions.



Estimation of the Nonparametric Component

Since Y — XB~ &,V z e R we can estimate ¢*(z) by
¢*(2) = p"(2)"%
where 4 = (PTP)=PT(Y — XB).

Again, the generalized inverse (P” P)~ becomes an inverse
asymptotically under certain assumptions.



Estimation of the Nonparametric Component

Assumptions:

1. Vi, (Y, Xj, Z;) areiid as (Y, X, Z) and (X, Z) is defined on a
compact subset of RP with 8(z) a bounded function and
EE,2 < 00

2. ¥ K danonsingular B such that the smallest eigenvalue of
E[BpX(Z)pX(Z)T BT] is bounded away from 0 uniformly in
K and 3 a sequence (p(K) such that
sup:||Bp*(2)]] < ¢o(K) and (¢o(K))>K/n— 0

3. 38, > 0 such that sup,|f(2) — pX(2)7 BT y¢| = O(X; K; ™)
as min;K; — oo and /n(3_; Kj_éj) —0
The first assumption is standard. The second assumption ensures

PT P is asymptotically nonsingular. The th}i{rd assumption ensures
¢;(z;) is arbitrarily close to its estimator p; (z)Tv; as Kj — .



Estimation of the Nonparametric Component

Theorem
Under our assumptions

supsexr|$'(2) — ¢'(2)] = Op(Co(K))[\/f K

Proof.
Li (2000).



Efficiency of the Estimator

To prove efficiency, we will first need to prove some preliminary
results.

Define Mag as the projection of g onto Ha. If we let 8 = E(X|2)
then h =T146 € Hp has the property that

E[6—h)(6—hT]
= infaer {EN(6 — 9)(0—9)"]}
Recall that the Hilbert space H,4 is not compact, therefore we are

unable to use Weierstrass's Theorem to say that there is an
h € H, that attains this infimum.



Efficiency of the Estimator

Lemma
For 8 = E(X|Z), 3 h € Ha such that h =146 has the property

E[6—h)(6—hT]
= infyen, dENO—9)(0—9)"]}
Proof.
We will consider the case where X; is univariate (¢ = 1) and there
are only two nonparametric components (r = 2). That is,
Yi=XiB+ ¢1(Zin) + $2(Zi2) + €.

A more general proof will follow the same arguments.



Efficiency of the Estimator

If 8 € Hy then set h = 8 and we are done.
We now consider the case where 6 ¢ Hx.

Let {a;}9°, {b;}3° be complete base functions that can expand ¢1
and ¢» respectively. Then {¢}3° = (a1, b1, a2, bo,...) isa

complete base function that can expand any ¢* = ¢1 + ¢ € Ha.
WLOG assume {¢;} is orthonormal. In other words, E[c;c;] = 6j;.

Now let h = h1 + ho = 3, cja; where a; = E[0¢;] and let
n=6-—h.



Efficiency of the Estimator

Multiplying 8 = h+m by ¢; and taking expectation we have

aj = E[6¢] = Elg Z ciaj+cn] = Zé,-jaﬁ—E[cjn] = a;+E[¢in]
i i
Therefore V J,

Elcm =0 = nl{c} = nLfVYfEHx

Thus if h=}_; cjaj < oo, then the fact that & = h +n for
n L Hy implies 3 h € H, that has the property

EN6 — h)?] = infyen, EL(6 — 9)°].

But since £E6% < oo, we have E[(h+n)?] = ER? + En?.
= ;A + En? < oo which implies h = Y, oy < 0. []



Efficiency of the Estimator

Theorem
Define uj = X; — NaX; and assume U = E[u;u]] is positive
definite. Then under our assumptions,

Vn(B—B) = N(0,0?U™1)
in distribution and
6207 - 02Ut

in probability where 6 = n~1 " (y; — XiB — ¢"(Z;))? and
U=n13(X = X)X = X)T.



Efficiency of the Estimator

Outline of Proof.
(i) v/n(B - B) = N(0,02U 1)

Recall that X; = 6; + v; = m; + h; + v; where E[v;|Z;] =0,
hi =Tx0; € Ha and n; L Ha.

Also recall that B =[(X — X)T(X = X)]"1(X = X)T(Y = Y)
asymptotically.

We write X — X =n+4 v+ (h— h) — 7 — ¥V and define

Sag=n"13;ABT and Sy = Saa. Thenif S T . exists, since
Sagrc =Sas+ Sac we have

V(B =) =S ¢[VnSx_g g —grred]



Efficiency of the Estimator

It can be shown with a little bit of detail that
Sx_x =U+0p(1)

Sx_stg—g = 0p(n"/?)

Sx-%e= op(n~1/?)

4. \/nSy_x . — N(0,62U) in distribution

w Mo

The first item can be proven taking
X-X=n+v+h-h~—-v-14

and showing that (h— h) = 0p(1), V= 0p(1) and 7j = 0p(1).
Thus, since n+ v = u then X — X = u+ 0p(1) and by LLN,
Sy ¢ — Eluu"]=U.



Efficiency of the Estimator

(i) 6207t = 02Ut

In the previous part, it was stated that we can prove with a bit of
detail that U = Sy ¢ = U+ 0p(1).

Since B — B = 0,(n"Y?) and ¢*(Z,) — ¢*(Z)) = 0p(1) we see
that
— € = Xi{(B—B) + (¢*(Z)) — *(Z))) = 0p(1)

€ =€+ 0p(1). By LLN, we see that n=1 3", & — E[e?] = 02,
thus 620! — o2U 1.



Efficiency of the Estimator

We now calculate the information in the parametric component.

In our problem we have
p(yi. Xi, Zii B, ¢") = yi — XiB — ¢™(Z))
Recall we have the definitions ls = Vg loglp(y, X, Z; B, ¢*)] and
Lg = Lg — lgLg. We will use the relation
1(B) = /ZﬁﬁgdP

for the information in B.

Note that the projection operator [y Is the same as the previous
projection operator used 14 since we are projecting our variable
into the space of additive functions.



Efficiency of the Estimator

It can be seen through differentiation that g = €7 *X; and thus
fﬁ = €I-_1(X,' - HAX,‘) = ei_lu,-.
Therefore the information in the parametric component is

1(B) = /ZﬁﬁgdP

= /EiQU,'U,-TdP

= Ele; 2Euiu]] > [E€f]  E[uiu] ] (1)

Where the inequality in (1) follows from Jensen's inequality.



Efficiency of the Estimator

Recall we defined E[u;u]] = U and E€? = 02 meaning the
information in B is

1(8) > 072U = Var(vn(f — B

This is just the usual Fisher information inequality. However, due
to a result by Chamberlain (1992) it can be shown that for

Y = Elp(yi, Xi, Zi; B, ¢*)?] and gg- = E[0p(yi, Xi, Zi; B, ¢*)/04*]
that

1(B) < El(lg — gp )T~ (dg — g )" ]
V h € Hy. Thus letting h = M4 X, and using the facts that
gy =1 and T71 = 572 we see that
1(B) < 0’2E[u,-u,-T]

meaning /(B) = 02U = [Var(yv/n(B — B))]!. Therefore B is an
asymptotically efficient estimator of .



Applications

A popular application of these partially linear additive models is in
partially linear time series, particularly additive stochastic
regression mentioned in Hardle, et al (2000). In it we assume

Ye=m(U;) + € = z@‘(xtj) +9(Z:) + €
J

with Z; € R". The partially linear additive model discussed in this
talk arises when we assume that some of the ¢;'s are related to
the Xi;'s linearly. Usually the function g is not assumed to be
additive.

Models of this type have important applications in economics.
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