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Intro to Semiparametrics
Eric Slud

We define here basic ideas and notations from van der
Vaart, Asymptotic Statistics (1998), Ch. 25, appealing
also to the monograph Efficient and Adaptive Estima-
tion for Semiparametric Models (1993), by Bickel et al.

Definitions.

e Statistical model: a family P = {Py}yco of
probability measures on some data space X.
(We usually take X = A, a product space with n
identical factors, n called the sample size, and all
Py iid product measures.)

e Parameter (finite-dimensional): a mapping
Y : P — RF (below, will be assumed ‘smooth’).

e Structural & Nuisance parameters: if ¥ is in
1-to-1 correspondence with (3,7n), 8 € R¥, n € L,
with G = ¥(Py) a parameter vector of primary in-
terest, then ( is called structural and n nuisance.
If ¥ and L are infinite-dimensional, then the prob-
lem of estimating [ is called semiparametric.



e A smooth parametric submodel is a 1-dimensional
curve t+— P, mapping [0,1) to P, smooth in the
sense of quadratic mean differentiablility: putting
P = Py, there exists g € Ly(P) such that, for any
measures (; such that P, P, <« @, as t — 0+
[ GG =G = S} dqr — o

t L dQy dQ: 2 dQy

g 1is called the score function for {P;}:>.

e Tangent space Pp is the set (necessarily a cone)
of all score functions g for smooth submodels.

e Smooth (at ) parameter mapping :
Y P — RF satisfies: 3 operator ¢)p on Pp so that
V smooth submodel {P;};>¢ with score g :

tH((R) —(P)) — dpg  as t— 0+

Assume from now on (what must be checked in exam-
ples) that Pp is a linear space and ¢ p a bounded linear
operator on it, i.e. Hzpp gl < Cligllzyp) for a finite
constant C, for all g € Pp.

Then by Riesz Representation Theorem applied to the
Hilbert space closure(Pp) C Lo(P), 3 unique element
Yp € closure(Pp) called the efficient influence

function such that

bpg = /@Epgdp
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Remark 1 If the submodel family P, 1s absolutely
continuous with respect to a fized prob. measure () on
X, with densities p(t,x) such that (0/0t)p(0+,x)
exists a.s. and

Je> 07 sSup t_l ‘p(t,ﬂ?) —p(O,az)\ < LQ(P)
t€0,¢]

then the score function g = (0/0t)p(0+,z) .
Definitions, continued.

e Fisher Information for ¢ as (the only) unknown
parameter in submodel {Fi} is ||gll5p = [ g°dP.

Remark 2 If a € R* s arbitrary, and densities
p(t,x) are smooth with log-derivative dominated as
in Remark 1, the Cramer-Rao lower variance bound

for a'(P;) within the submodel is
Wirg?/ [ gap = { [Wirigar} ) [ ¢ar

Taking sup via Cauchy—Sghwarz over all g € 6103ur6(7jp)
is achieved when g = a'{p, and gives a’ (Z(B))ta for
B = Y(P), PeP, where:

e Semiparametric information bound for 3 is

7(9) - {/ (dr) P}
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Next some definitions related to statistics and estimators.

e An estimator T = T(X) of y(P) € R* isa
measurable function on X,

e Estimator sequences T, =T,(X) on A&, (data
of sample size n, with ¥(P) depending only on 1st
factor of product-measure P) are semiparametric
consistent if:

VP e P, T, — ¥(P) as. orin prob.

e Estimators T, = T,,(X) are called regular at P
if there exists a probability law £ (on RF) s.t. V
submodel {F;} (with score g € Pp), as n — oo

Vi (T, = ¢(Pyy) — £ wnder Py



Results on Information Bounds & Estimators

Suppose 9 = (8,1), 8 € R, n € L, ¢(Ps,) = 5.
Generally, e.g. if logs of densities p(z, 3,n) are smooth

and moment-bounded w.r.t. [, n arguments, then the
assumed-linear tangent space has the form

PP — ﬁ?P — 777jp = {gl+gg . g1 = score for Pﬁt,no ,

go = score for Pg .}
Define P = Pg,,, and Zg = Vg logp(z, Bo, o)

For submodel Pj,,, with score gy :

vpgp=0 = Yp L ,Pp = p € 3PpO,Pp

For a € R* submodel Ppg g, : score g3 = d Z@,
dpgr = a = /@EpgldP=/1ﬁp(g1—Hngl)dP —a
where 11, = orthog. proj. onto an. Put lNg = Zﬁ—Hnlg.
Va, /@Pigadpza S g = (/igfgrdP)_l I

I3 is called efficient score function for .

Note: Z(38) = (/ﬁpﬂgd[v_l = /Zﬁﬁﬁrdp



Consequence of Projection Characterization of p

Suppose now that [ is 1-dimensional and that ¥ =
(B,m) lies in a fixed finite-dimensional parameter set 7 =
(A, po) where A € RY, g < 0o, and p would in general
be infinite-dimensional but is assumed known = py, and
moreover that all components of ¥p lie in the span of [ 3
and of the components of 1y = V, logp(z, By, Ao, po)-

Then, since 7777p is exactly the subspace of Pp
orthogonal to the single element wp, and since lﬁ —
vp L p, it follows that lg —)p € Pp Since
the components of [, lie in n7jp, and since we have
assumed ¢p € span{ls, [}, we conclude that for some
ce R p = Zﬁ—c’ N (A little further work shows that
¢ is uniquely determined as ( [ I\[¥dP)™" [I\lsdP.)

Within the finite-dimensional model (3, A) reparam-
eterized as (B, A) = (8 — (A — X\g), A), it is easy to
calculate that the information matrix is block-diagonal
with upper-left element [ iglNgdP and lower-right ¢ X
g block [ [ AthATdP and therefore that the asymptotic
variance for ML estimators of (8 is (Z(8))~' = [¢%dP

Thus within finite-dimensional models of ar-
bitrarily large but finite nuisance-parameter
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dimension whose scores space t¢p, the opti-
mal asymptotic variance is the same [ @E%dP
whether the nuisance parameters are unkown
as when they are known ! (We already saw this
same asymptotic variance from the Cramer-
Rao bound in any 1-parameter submodel with

score p.)

A deep Theorem provides a clearer view of Z as the
semiparametric information bound for estimates
of ¢(P) = [ in the semiparametric semtting P =

{P(ﬁm)}-

Hajek Convolution Theorem

The (generalized) Hajek Convolution Theorem, van der
Vaart p. 366, says when Pp is linear space: every
limit distribution £ of regular estimator seq. T, is

N0, [ bp)ls dP) + M for some prob. law M.



Inverse Operators & Hilbert Nuisance Parameter

We continue with 9 = (3,1), 3 € R*, n € L, and
now assume L a Hilbert space (or restrict attention to
a neighhorhood of nuisance parameters ng + tv, t > 0,
v € L). Define a nuisance score mapping

: 0
s: L 7 PP ) S(’U) = a logp(x7607770 ‘|‘t7}) 0

(or could replace tv in some problems by x(ng, t,v) with
x(n,0) = 0 and second partial ka(ng,0,v) = v).

Assume that the covariance operator C : LX L — R
given by

oy — / s(v) s(w) dP

is a bounded nonsingular bilinear form, in which case the
Riesz Representation Theorem implies that C': L — L
is a bounded (i.e., continuous) linear operator. Nonsin-
gularity says that (0/9t) logp(x, By, no + tv)|t=g Z 0
(which implies Cv # 0) for v ## 0, in which case C1
exists as a mapping on L.



Also define B : L — RF (where k = dim(3)) by
BUZ/ZﬁS(U)dP : Vovel

(Recall that both Ig, s(v) are measurable (Ly) real-
valued functions on X.) Cauchy-Schwarz implies B is a
bounded operator, and B* : R¥ — L satisfies

(v,B*a);, = d Bv = /a'lﬁs(v) dP

Assume further that C1B*:RF - L is bounded.
Then we check that a'ls — s(C~*B*a) L ,Pp, since

/ @iy — s(C~'B*a)) s(v) dP
= dBv — (C'B*a)"Cv = 0
It follows in these circumstances that
Vac RN, dly = dlz — s(C"'B*a)
and the semiparametric information bound is given by
dZI(B)a = / (a'l3)*dP = / (a'lg)*dP— / (s(C~*B*a))*dP

or: Z(8) = [(I3)?dP — BC™'B* as in fin-dim case !



