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Intro to Semiparametrics

Eric Slud

We define here basic ideas and notations from van der

Vaart, Asymptotic Statistics (1998), Ch. 25, appealing

also to the monograph Efficient and Adaptive Estima-

tion for Semiparametric Models (1993), by Bickel et al.

Definitions.

• Statistical model: a family P = {Pϑ}ϑ∈Θ of

probability measures on some data space X .

(We usually take X = Xn a product space with n

identical factors, n called the sample size, and all

Pϑ iid product measures.)

• Parameter (finite-dimensional): a mapping

ψ : P → Rk (below, will be assumed ‘smooth’).

• Structural & Nuisance parameters: if ϑ is in

1-to-1 correspondence with (β, η), β ∈ Rk , η ∈ L,

with β = ψ(Pϑ) a parameter vector of primary in-

terest, then β is called structural and η nuisance.

If ϑ and L are infinite-dimensional, then the prob-

lem of estimating β is called semiparametric.
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• A smooth parametric submodel is a 1-dimensional

curve t 7→ Pt mapping [0, 1) to P , smooth in the

sense of quadratic mean differentiablility : putting

P ≡ P0, there exists g ∈ L2(P ) such that, for any

measures Qt such that P, Pt � Qt, as t→ 0+∫ {1

t

[
(
dPt
dQt

)1/2− (
dP

dQt
)1/2

]
− g

2
(
dP

dQt
)1/2

}2

dQt → 0

g is called the score function for {Pt}t≥0.

• Tangent space ṖP is the set (necessarily a cone)

of all score functions g for smooth submodels.

• Smooth (at P ) parameter mapping :

ψ : P → Rk satisfies: ∃ operator ψ̇P on ṖP so that

∀ smooth submodel {Pt}t≥0 with score g :

t−1 (ψ(Pt)− ψ(P )) → ψ̇P g as t→ 0+

Assume from now on (what must be checked in exam-

ples) that ṖP is a linear space and ψ̇P a bounded linear

operator on it, i.e. ‖ψ̇P g‖ ≤ C ‖g‖L2(P ) for a finite

constant C, for all g ∈ ṖP .

Then by Riesz Representation Theorem applied to the

Hilbert space closure(ṖP ) ⊂ L2(P ), ∃ unique element

ψ̃P ∈ closure(ṖP ) called the efficient influence

function such that

ψ̇P g =

∫
ψ̃P g dP
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Remark 1 If the submodel family Pt is absolutely

continuous with respect to a fixed prob. measure Q on

X , with densities p(t, x) such that (∂/∂t)p(0+, x)

exists a.s. and

∃ ε > 0, sup
t∈[0,ε]

t−1 |p(t, x)− p(0, x)| ∈ L2(P )

then the score function g = (∂/∂t)p(0+, x) .

Definitions, continued.

• Fisher Information for t as (the only) unknown

parameter in submodel {Pt} is ‖g‖2
2,P =

∫
g2 dP .

Remark 2 If a ∈ Rk is arbitrary, and densities

p(t, x) are smooth with log-derivative dominated as

in Remark 1, the Cramer-Rao lower variance bound

for a′ ψ(Pt) within the submodel is

(a′(ψ̇P g))
2 /

∫
g2 dP =

{∫
(a′ψ̃P ) g dP

}2

/

∫
g2 dP

Taking sup via Cauchy-Schwarz over all g ∈ closure(ṖP )

is achieved when g = a′ψ̃P , and gives a′ (I(β))−1 a for

β ≡ ψ(P ), P ∈ P, where:

• Semiparametric information bound for β is

I(β) =
{∫ (

ψ̃P

)2

dP
}−1
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Next some definitions related to statistics and estimators.

• An estimator T ≡ T (X) of ψ(P ) ∈ Rk is a

measurable function on X .

• Estimator sequences Tn = Tn(X) on Xn (data

of sample size n, with ψ(P ) depending only on 1st

factor of product-measure P ) are semiparametric

consistent if:

∀P ∈ P , Tn → ψ(P ) a.s. or in prob.

• Estimators Tn = Tn(X) are called regular at P

if there exists a probability law L (on Rk) s. t. ∀
submodel {Pt} (with score g ∈ ṖP ), as n→∞
√
n (Tn − ψ(P1/

√
n))

D−→ L under P1/
√
n
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Results on Information Bounds & Estimators

Suppose ϑ = (β, η), β ∈ Rk, η ∈ L, ψ(Pβ,η) ≡ β.

Generally, e.g. if logs of densities p(x, β, η) are smooth

and moment-bounded w.r.t. β, η arguments, then the

assumed-linear tangent space has the form

ṖP = βṖP ⊕ ηṖP ≡ {g1+g2 : g1 = score for Pβt,η0 ,

g2 = score for Pβ0,ηt}

Define P = Pβ0,η0 and l̇β = ∇β log p(x, β0, η0)

For submodel Pβ0,ηt with score g2 :

ψ̇P g2 ≡ 0 ⇒ ψ̃P ⊥ ηṖP ⇒ ψ̃P ∈ βṖP 	 ηṖP

For a ∈ Rk, submodel Pβ0+at,η0 : score g1 = a′ l̇β,

ψ̇P g1 = a ⇒
∫
ψ̃P g1 dP =

∫
ψ̃P (g1−Πηg1) dP = a

where Πη = orthog. proj. onto ηṖP . Put l̃β ≡ l̇β−Πη l̇β.

∀ a,
∫
ψ̃P l̃

tr
β a dP ≡ a ⇒ ψ̃P =

( ∫
l̃β l̃

tr
β dP

)−1

l̃β

l̃β is called efficient score function for β.

Note: I(β) =
( ∫

ψ̃P ψ̃
tr
P dP

)−1

=

∫
l̃β l̃

tr
β dP
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Consequence of Projection Characterization of ψ̃P

Suppose now that β is 1-dimensional and that ϑ =

(β, η) lies in a fixed finite-dimensional parameter set η =

(λ, ρ0) where λ ∈ Rq, q <∞, and ρ would in general

be infinite-dimensional but is assumed known = ρ0, and

moreover that all components of ψ̃P lie in the span of l̇β
and of the components of l̇λ ≡ ∇λ log p(x, β0, λ0, ρ0).

Then, since ηṖP is exactly the subspace of ṖP
orthogonal to the single element ψ̃P , and since l̇β −
ψ̃P ⊥ ψ̃P , it follows that l̇β − ψ̃P ∈ ηṖP . Since

the components of l̇λ lie in ηṖP , and since we have

assumed ψ̃P ∈ span{l̇β, l̇λ}, we conclude that for some

c ∈ Rq, ψ̃P = l̇β−c′l̇λ. (A little further work shows that

c is uniquely determined as (
∫
l̇λl̇

tr
λ dP )−1

∫
l̇λl̇βdP .)

Within the finite-dimensional model (β, λ) reparam-

eterized as (β∗, λ) ≡ (β − c′(λ − λ0), λ), it is easy to

calculate that the information matrix is block-diagonal

with upper-left element
∫
l̃β l̃

tr
β dP and lower-right q ×

q block
∫
l̃λl̃

tr
λ dP and therefore that the asymptotic

variance for ML estimators of β is (I(β))−1 =
∫
ψ̃2
PdP

Thus within finite-dimensional models of ar-

bitrarily large but finite nuisance-parameter
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dimension whose scores space ψ̃P , the opti-

mal asymptotic variance is the same
∫
ψ̃2
PdP

whether the nuisance parameters are unkown

as when they are known ! (We already saw this

same asymptotic variance from the Cramer-

Rao bound in any 1-parameter submodel with

score ψ̃P .)

A deep Theorem provides a clearer view of I as the

semiparametric information bound for estimates

of ψ(P ) = β in the semiparametric semtting P =

{P(β,η)}.

Hajek Convolution Theorem

The (generalized) Hajek Convolution Theorem, van der

Vaart p. 366, says when ṖP is linear space: every

limit distribution L of regular estimator seq. Tn is

N (0,
∫
ψ̃P ψ̃

tr
P dP ) ∗M for some prob. law M.
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Inverse Operators & Hilbert Nuisance Parameter

We continue with ϑ = (β, η), β ∈ Rk, η ∈ L, and

now assume L a Hilbert space (or restrict attention to

a neigbhorhood of nuisance parameters η0 + tv, t ≥ 0,

v ∈ L). Define a nuisance score mapping

s : L→η ṖP , s(v) ≡ ∂

∂t
log p(x, β0, η0 + tv)

∣∣∣
t=0

(or could replace tv in some problems by κ(η0, t, v) with

κ(η, 0) ≡ 0 and second partial κ2(η0, 0, v) ≡ v).

Assume that the covariance operator C : L×L→ R

given by

v′Cv =

∫
s(v) s(w) dP

is a bounded nonsingular bilinear form, in which case the

Riesz Representation Theorem implies that C : L→ L

is a bounded (i.e., continuous) linear operator. Nonsin-

gularity says that (∂/∂t) log p(x, β0, η0 + tv)|t=0 6≡ 0

(which implies Cv 6= 0) for v 6= 0, in which case C−1

exists as a mapping on L.
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Also define B : L→ Rk (where k = dim(β)) by

Bv =

∫
l̇β s(v) dP , ∀ v ∈ L

(Recall that both l̇β, s(v) are measurable (L2) real-

valued functions on X .) Cauchy-Schwarz implies B is a

bounded operator, and B∗ : Rk → L satisfies

〈v,B∗a〉L = a′Bv =

∫
a′ l̇β s(v) dP

Assume further that C−1B∗ : Rk → L is bounded.

Then we check that a′l̇β − s(C−1B∗ a) ⊥ ηṖP , since∫
(a′l̇β − s(C−1B∗ a)) s(v) dP

= a′Bv − (C−1B∗ a)tr C v = 0

It follows in these circumstances that

∀ a ∈ Rk , a′l̃β = a′l̇β − s(C−1B∗ a)

and the semiparametric information bound is given by

a′I(β)a =

∫
(a′l̃β)

2dP =

∫
(a′l̇β)

2dP−
∫

(s(C−1B∗a))2dP

or: I(β) =
∫

(l̇β)
2dP − BC−1B∗ as in fin-dim case !
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