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Estimating functions, introduced by Godambe, are a useful tool for construct-

ing estimators. The classical maximum likelihood estimator and the method of

moments estimator are special cases of estimators generated as the solution to cer-

tain estimating equations. The main advantage of this method is that it does not

require knowledge of the full model, but rather of some functional, such as a number

of moments.

We define an estimating function Ψ to be a Fisher estimating function if it

satisfies Eθ (ΨΨ′) = −Eθ (∂Ψ/∂θ). The motivation for considering this class of es-

timating functions is that a Fisher estimating function behaves much like the Fisher

score, and the estimators generated as solutions to these estimating equations behave

much like maximum likelihood estimators. The estimating functions in this class

share some of the same optimality properties as the Fisher score function and they

have applications for estimation in submodels, elimination of nuisance parameters,

and combinations of independent samples. We give some applications of estimating



functions to estimation of a location parameter in the presence of a nuisance scale

parameter. We also consider the behavior of estimators generated as solutions to es-

timating equations under model misspecification when the misspecification is small

and can be parameterized. A problem related to model misspecification is attempt-

ing to distinguish between a finite number of competing parametric families. We

construct an estimator that is consistent and efficient, regardless of which family

contains the true distribution.
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Chapter 1

Introduction

1.1 Overview

The topic of this dissertation is statistical inference for samples (X1, . . . ,Xn)

drawn from a population Pθ parameterized by a scalar or vector valued parameter

θ. Estimating functions Ψ(x;θ) for a statistical model (X ,A,P = {Pθ : θ ∈ Θ})

are a convenient tool since they can be based on partial information on P and yet

preserve basic properties of the classical methods, such as the method of moments

and the method of maximum likelihood. Estimating functions are also widely used

in generalized linear models.

In Chapter 2, “Estimating functions”, we present some general results on

estimating functions and the estimators generated from estimating equations. A

novelty is the concept of Fisher estimating functions and properties of the estimators

they generate.

In Chapter 3, “Estimating functions for location parameter families”, we de-

scribe the behavior of estimators of a location parameter and estimators of a location

parameter in the presence of a nuisance scale parameter generated from estimating

equations. We also show that estimating functions can be useful estimators them-

selves when we construct a simple modification of the Pitman estimator in the

presence of a nuisance scale parameter.
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Chapter 4, “Estimators by estimating equations in misspecified models”, con-

tains new results on the large sample (i.e. asymptotic) behavior of estimators defined

by estimating functions under misspecified models when the misspecification is of

different order of smallness compared to 1/
√
n. The models of misspecification un-

der study look rather realistic for applications and, at the same time, convenient for

a rigorous mathematical analysis.

In Chapter 5, “Analogues of classical tests based on estimating functions”, we

construct analogues of Rao and Wald’s classical tests and study their asymptotic

properties when the parameter estimators for the extended and/or restricted model

are obtained from estimating equations. The results can be used in reducing the

dimension of parametric models.

Some results that are, in a sense, by-products of research in the above main

topics are presented in Chapter 6, “Combining estimators”. They deal with combin-

ing estimators obtained from independent estimating equations. A characterization

of multivariate distributions depending on a multivariate location parameter by lin-

earity of the Pitman estimator of a linear function of the parameter is obtained. It

is worth noting that the class also contains non-Gaussian distributions, in contrast

to the univariate case.

1.2 Outline of results

1. Theorem (2.3.1): We show the superadditivity of the efficient information on

a structural parameter θ1 in the presence of a nuisance parameter θ2 based
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on independent estimating functions Ψ1 and Ψ2.

2. Theorem (2.3.2): If θ∗2 is a
√
n−consistent estimator of the nuisance parameter

θ2 and θ̂1 is a consistent solution of the estimating equation

n∑
i=1

Ψ̂1 (Xi;θ1,θ
∗
2) = 0, (1.1)

where Ψ̂1 is the efficient estimating function for θ1 in the presence of θ2 based

on Ψ, then

√
n
(
θ̂1 − θ1

)
d−→ Nr

(
0,B11(θ)

)
(1.2)

as n −→∞.

3. Theorem (3.2.1): A simple modification of the Pitman estimator of a location

parameter µ in the presence of a nuisance scale parameter σ is given by

t̃n = X − S

nÎ

n∑
i=1

Ĵ1

(
Xi −X

S

)
. (1.3)

We show that

√
n
(
t̃n − µ

) d−→ N

(
0,
σ2

Î

)
, (1.4)

where σ2/Î is the efficient information quantity.

4. Theorem (3.2.2): We construct a modified version of the polynomial Pitman

estimator for a location parameter µ in the presence of a nuisance scale pa-

rameter σ, given by

µ̃n = X − S

nÎ(k)

n∑
i=1

Ĵ
(k)
1

(
Xi −X

S

)
(1.5)

and show that

√
n (µ̃n − µ)

d−→ N

(
0,

σ2

Î(k)

)
(1.6)

3



as n −→∞.

5. Theorem (4.2.3): When the model P = {Pθ} is misspecified and the misspec-

ification can be parameterized through ηn = c/
√
n, the behavior of θ̂n, the

solution to a general estimating equation
n∑
i=1

Ψ(Xi;θ) = 0 is

√
n
(
θ̂n − θ

)
d−→ Ns

(
B(θ), I−1

Ψ (θ)
)
. (1.7)

If ‖ηn‖ = o(1/
√
n), then the asymptotic behavior of θ̂n is not affected by

model misspecification.

6. Theorem (4.3.1): If θ̂n is an unbiased estimator of θ when the true distribution

is F (x; θ) or the true distribution isG(x; θ), then a lower bound for the variance

of θ̂n when the true distribution is F is given by

Var1

(
θ̂n

)
≥ 1

nI1(θ)− n2(E2J1(x))2

(1+∆1)n

(1.8)

for some ∆1 ≥ 0.

7. Theorem (4.3.3): Let P = P1 ∪ P2 where P1 = {f1(x; θ1) : θ1 ∈ Θ1 ⊆ R} and

P2 = {f2(x; θ2) : θ2 ∈ Θ2 ⊆ R}, and let θ̂1 be the MLE for θ1 and θ̂2 be the

QMLE for θ2. We show

P1

(
sup
θ∈Θ1

n∏
i=1

f1(Xi; θ) > sup
θ∈Θ2

n∏
i=1

f2(Xi; θ)

)
−→ 1 (1.9)

as n −→∞ and

√
n
(
θ̂n − θ

)
d,P1−→ N

(
0,

1

I1(θ)

)
(1.10)
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as n −→∞, where

θ̂n = θ̂1I

{
n∏
i=1

f1(Xi; θ̂1) >
n∏
i=1

f2(Xi; θ̂2)

}

+ θ̂2I

{
n∏
i=1

f1(Xi; θ̂1) ≤
n∏
i=1

f2(Xi; θ̂2)

}
.

(1.11)

8. Theorem (5.2.1), Theorem (5.2.2): We give a version of the Wald test statistic

Wn = nR′(θ̂n)

[
∂R(θ̂n)

∂θ
I−1
Ψ (θ̂n)

∂R; (θ̂n)

∂θ

]−1

R(θ̂n) (1.12)

based on an estimating function Ψ for testing the hypothesis R(θ) = 0 and

show that the sequence of tests based on Wn is asymptotically consistent.

9. Theorem (5.3.3), Theorem (5.3.4), Theorem (5.3.5): We give a version of the

Rao score test statistic

Rn =
1

n

(
n∑
i=1

Ψ(Xi; θ̃n)

)′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ(Xi; θ̃n)

)
(1.13)

based on a Fisher estimating function Ψ for testing the hypothesis θ = θ(η),

show that the sequence of tests Rn is asymptotically consistent, and prove

Rn −Wn = op(1).

10. Theorem (5.3.7): The limiting distribution of Rn and Wn under a linear hy-

pothesis and the form of misspecification described in Chapter 4 is shown to

be a non-central χ2 distribution.

11. Theorem (6.1.1), Theorem (6.1.3): Let X and Y be independent random

samples whose distributions depend on a common parameter θ. Let θ̂1 be the

solution to the estimating equation Ψ1(X;θ) = 0 and θ̂2 be the solution to

5



the estimating equation Ψ2(Y;θ) = 0. We show the best linear combination

of θ̂1 and θ̂2 is asymptotically as good as the estimator generated from the

optimal linear combination of the estimating functions Ψ1 and Ψ2.

12. Theorem (6.2.3), Theorem (6.2.5): We give the form of the Pitman estimator

of a linear function of a bivariate location parameter and show that the Pitman

estimator is linear when the characteristic function is of the form

φ(t, s) = exp{Q(t, s) + h(c2t− c1s)} (1.14)

for some quadratic form Q and some differentiable function h.

6



Chapter 2

Estimating functions

2.1 Introduction

Let P = {Pθ : θ ∈ Θ ⊆ Rs} be a family of distributions of a random element

X depending on a parameter θ ∈ Θ in a measurable space (X ,A). In other words,

P (X ∈ A;θ) = Pθ(A), A ∈ A, θ ∈ Θ.

Our goal is to estimate θ based on our observation X. Estimating equations,

introduced by Godambe ([10]), are a useful tool for constructing estimators. The

classical maximum likelihood estimator (MLE) and method of moments estimator

are special cases of estimators generated by estimating equations. The advantage

of the method of moments estimator is that no assumptions about the probability

measure need to be made except for the structure of the moments, while the advan-

tage of using maximum likelihood is that the estimator will be optimal. However,

to construct the MLE it is necessary to have full distributional specification.

A vector function Ψ = Ψ(x;θ) : X ×Θ 7→ Rs is called an estimating function

for P if for all θ ∈ Θ,

1. EθΨ = 0,

2. Eθ|Ψj|2 <∞, j = 1, . . . , s, and

7



3. the matrix

CΨ(θ) = −Eθ
(
∂Ψ

∂θ

)
(2.1)

is nonsingular.

In addition, we will assume the covariance matrix

BΨ(θ) = Eθ (ΨΨ′) (2.2)

is positive definite for all θ ∈ Θ.

Let G be the set of all estimating functions g : X ×Θ 7→ Rs for P . The choice

of the estimating function Ψ and the properties of the estimator it generates are

part of the theory of estimating functions.

Suppose X1, . . . ,Xn is a sample from a population Pθ ∈ P . The justification

for the term ‘estimating function’ comes from the fact that under general regularity

conditions (e.g. [39], p. 46), there exists a measurable function, i.e. a statistic,

θ̂n = θ̂n(X1, . . . ,Xn), which is a solution to the estimating equation

n∑
i=1

Ψ(Xi;θ) = 0, (2.3)

such that

√
n
(
θ̂n − θ

)
=

1√
n

C−1
Ψ (θ)

n∑
i=1

Ψ (Xi;θ) + op(1), (2.4)

where op(1) represents a random vector R(X1, . . . ,Xn;θ) with the property that as

n −→∞, ‖R(X1, . . . ,Xn;θ)‖ −→ 0 in Pθ-probability. Hence,

√
n
(
θ̂n − θ

)
d−→ Ns

(
0,C−1

Ψ (θ)BΨ(θ)C−1
Ψ (θ)′

)
(2.5)

8



as n −→ ∞. One simple condition for (2.4) to hold is that there exists a functiona
Ψ(x) with E

a
Ψ

2
(x) <∞ such that

‖Ψ (x;θ1)−Ψ (x;θ2)‖ ≤
a

Ψ (x) ‖θ1 − θ2‖ (2.6)

for every θ1 and θ2 in a neighborhood of the true value θ.

The matrix

IΨ(θ) = C′Ψ(θ)B−1
Ψ (θ)CΨ(θ) (2.7)

is called the information on θ contained in the estimating function Ψ. This definition

was introduced by Bhapkar ([4]) in 1972 based on the work of Godambe ([10]), and

can be viewed as a generalization of the Fisher information

I(θ) = Eθ

(
∂

∂θ
log f(x;θ)

∂

∂θ
log f(x;θ)′

)
. (2.8)

If Pθ is absolutely continuous with respect to some sigma-finite measure µ with

dPθ/dµ = f(x;θ), where f(x;θ) is twice differentiable in θ and satisfies

∂

∂θ

∫
f(x;θ)µ(dx) =

∫
∂

∂θ
f(x;θ)µ(dx), (2.9)

then the Fisher score J = J(x;θ) = ∂ log f(x;θ)/∂θ is an estimating function which

satisfies BJ(θ) = CJ(θ). In this case IJ(θ) reduces to I(θ), so that this definition

of the information is consistent with Fisher’s definition.

Some of the properties of the information on θ contained in the estimating

function Ψ are as follows:

1. Let S = S(X) be sufficient for the family P = {Pθ : θ ∈ Θ ⊆ Rs}. The

function

Ψ∗(s;θ) = Eθ (Ψ(x;θ) | s) (2.10)

9



defines an estimating function for P and

IΨ(θ) ≤ IΨ∗(θ). (2.11)

Proof. Assume θ ∈ R. Clearly Eθ (Ψ∗) = 0, and Eθ (Ψ2) = Eθ (Ψ∗2) +

EθVarθ (Ψ s) so that 0 < Eθ (Ψ∗2) = Varθ (Ψ∗) <∞. Since S is sufficient for

θ, the conditional distribution of X given S is independent of θ, so assuming

we can interchange the operations of expectation and differentiation, we have

Eθ

(
∂

∂θ
Ψ∗
)

= Eθ

(
∂

∂θ
E (Ψ | s)

)
= Eθ

(
E

(
∂

∂θ
Ψ | s

))
= Eθ

(
∂

∂θ
Ψ

)
6= 0

(2.12)

so that Ψ∗ is an estimating function for P .

Let f(x; θ) denote the density function. We can differentiate the identity

0 = EθΨ(x; θ) with respect to θ to get

0 =
∂

∂θ
EθΨ(x; θ) =

∂

∂θ

∫
Ψ(x; θ)f(x; θ)µ(dx)

=

∫
∂

∂θ
Ψ(x; θ)f(x; θ)µ(dx) +

∫
Ψ(x; θ)

∂

∂θ
f(x; θ)µ(dx)

= Eθ

(
∂

∂θ
Ψ(x; θ)

)
+ Eθ

(
Ψ(x; θ)

∂

∂θ
log f(x; θ)

) (2.13)

so that

−Eθ
(
∂

∂θ
Ψ(x; θ)

)
= Eθ (Ψ(x; θ)J(x; θ)) (2.14)

where J(x; θ) is the Fisher score. Similarly, if S has density q(s; θ),

−Eθ
(
∂

∂θ
Ψ∗(s; θ)

)
= Eθ (Ψ∗(s; θ)J(s; θ)) . (2.15)

Since S is sufficient for θ, the density can be factored as f(x; θ) = g(s(x), θ)h(x),

hence

J(x; θ) =
∂

∂θ
log f(x; θ) =

∂

∂θ
log g(s(x), θ). (2.16)

10



We have

Eθ (Ψ(x; θ)J(x; θ) | s) = Eθ

(
Ψ(x; θ)

∂

∂θ
log g(s; θ) s

)
=

∂

∂θ
log g(s; θ)Eθ (Ψ(x; θ) s)

= Eθ

(
∂

∂θ
log f(x; θ) s

)
Ψ∗(s; θ)

=
∂

∂θ
log q(s; θ)Ψ∗(s; θ).

(2.17)

The last equality follows from a well-known property of the Fisher score, the

proof of which can be found in [30]. Equations (2.13) - (2.15) give us

IΨ(θ) =

(
Eθ

∂
∂θ

Ψ(x; θ)
)2

EθΨ2(x; θ)
=

[
Eθ
(
Ψ(x; θ) ∂

∂θ
log f(x; θ)

)]2
EθΨ∗2(s; θ) + EθVar (Ψ(x; θ) s)

≤
[
EθEθ

(
Ψ(x; θ) ∂

∂θ
log f(x; θ) s

)]2
EθΨ∗2(s; θ)

=

[
Eθ
(
Ψ∗(s; θ) ∂

∂θ
log q(s; θ)

)]2
EθΨ∗2(s; θ)

=

(
Eθ

∂
∂θ

Ψ∗(s; θ)
)2

EθΨ∗2(s; θ)

= IΨ∗(θ).

(2.18)

For the case of a multivariate parameter, see [28], p. 37.

A more general monotonicity property holds for the Fisher score J(x;θ). For

any statistic T = T(X), the information in the estimating function J∗(t;θ) =

Eθ (J(x;θ) | t), IT(θ), is less than or equal to the Fisher Information, I(θ),

with equality if and only if T is sufficient for θ.

For a general estimating function we do not have this property of monotonicity.

That is if T = T(X) is a statistic, then Ψ∗(t;θ) = Eθ (Ψ(x;θ) t) will be

an estimating function for P , but we cannot say that IΨ(θ) ≤ IΨ∗(θ) or

IΨ(θ) ≥ IΨ∗(θ).

11



2. Let U = U(X) be an ancillary statistic. That is, the distribution of U does

not depend on the parameter θ. If Ψ = Ψ(x;θ) is an estimating function for

θ, then so too is

Ψ∗ = Ψ∗(x;θ) = Ψ(x;θ)− Eθ (Ψ(x;θ) u) (2.19)

and

IΨ(θ) ≤ IΨ∗(θ). (2.20)

Proof. See [5].

There is a close relationship between 1 and 2 (see [33] and [34]). Suppose

there exists a complete sufficient statistic S = S(X) for θ. By Basu’s theorem

S is independent of every ancillary statistic U = U(X), so that for square

integrable functions g and h, Covθ (g(S), h(U)) = 0. The space of functions

of U is a linear subspace of the vector space of all square integrable functions

of X. The subspace of functions of S is then the orthogonal complement of

this linear vector space. This suggests that an estimating function can be

improved upon by projecting it onto the orthogonal complement of the space

of ancillary statistics, even if a complete sufficient statistic does not exist.

3. Let X be distributed according to the probability measure Pθ and Y be dis-

tributed according to the probability measure Qθ, where X and Y are inde-

pendent random vectors and θ ∈ Θ ⊆ Rs. If Ψ1 = Ψ1(x;θ) is an estimating

function for θ and Ψ2 = Ψ2(y;θ) is an estimating function for θ and the

12



matrix

CΨ(θ) = CΨ1(θ) + CΨ2(θ) (2.21)

is nonsingular, then

Ψ(x,y;θ) = Ψ1(x;θ) + Ψ2(y;θ) (2.22)

is also an estimating function for θ, and we have

IΨ(θ) ≤ IΨ1(θ) + IΨ2(θ). (2.23)

If BΨ1(θ) = CΨ1(θ) and BΨ2(θ) = CΨ2(θ) then we have equality in equation

(2.23).

Proof. If Ψ1 and Ψ2 are estimating functions, then Ψ = Ψ1 + Ψ2 has zero

expectation and components which are square integrable. The covariance ma-

trix

BΨ(θ) = Eθ (ΨΨ′) = BΨ1(θ) + BΨ2(θ) (2.24)

is positive definite, so that (using assumption (2.21)) Ψ is an estimating func-

tion for θ. The information on θ contained in Ψ is CΨ
′(θ)B−1

Ψ (θ)CΨ(θ), so

to prove (2.23) we need to show that

(CΨ1(θ) + CΨ2(θ))′ (BΨ1(θ) + BΨ2(θ))−1 (CΨ1(θ) + CΨ2(θ))

≤ C′Ψ1
(θ)B−1

Ψ1
(θ)CΨ1(θ) + C′Ψ2

(θ)B−1
Ψ2

(θ)CΨ2(θ).

(2.25)

This follows from the zero expectation of an estimating function, the inde-

pendence of X and Y, and the fact that any covariance matrix is positive

13



semi-definite:

0 ≤ Eθ
(
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2 −C′ΨB−1

Ψ Ψ
)

(
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2 −C′ΨB−1

Ψ Ψ
)′

= C′Ψ1
B−1

Ψ1
CΨ1 + C′Ψ2

B−1
Ψ2

CΨ2 + C′ΨB−1
Ψ CΨ

− Eθ
(
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2

) (
C′ΨB−1

Ψ (Ψ1 + Ψ2)
)′

− Eθ
(
C′Ψ1

B−1
Ψ (Ψ1 + Ψ2)

) (
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2

)′
= IΨ1(θ) + IΨ2(θ) + IΨ(θ)− 2 (CΨ1 + CΨ2)′B−1

Ψ CΨ

= IΨ1(θ) + IΨ2(θ)− IΨ(θ).

(2.26)

If BΨ1(θ) = CΨ1(θ) and BΨ2(θ) = CΨ2(θ) then also BΨ(θ) = CΨ(θ), and

the above inequality becomes an equality.

The information on θ contained in the estimating function Ψ can be used

as a tool for comparing different estimating functions for the same family P . The

estimating function Ψ1 is said to be more informative or better than the estimating

function Ψ2 if

IΨ1(θ) ≥ IΨ2(θ) (2.27)

in the sense that IΨ1(θ) − IΨ2(θ) is a non-negative definite matrix. Similarly, we

say that an estimating function Ψ is optimal in a class C of estimating functions for

P if it is more informative than any function Ψ̃ ∈ C.

It is well-known and is easily proved that under mild regularity conditions

I(θ) ≥ IΨ(θ) for any estimating function Ψ ∈ G ([10], [26]), so that the optimal

estimating function in the class G of all estimating functions is the Fisher score. As
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a second example, suppose E(x) = α(θ) and Var(x) = σ2(θ) where α(θ) and σ2(θ)

are known differentiable functions of a scalar-valued parameter θ. The optimal

estimating function in the class of linear estimating functions Ψ(x; θ) = a(θ)+ b(θ)x

is given by

Ψ(x; θ) =
α′(θ)(x− α(θ))

σ2(θ)
. (2.28)

It can be shown (see [14]) that the above definition of optimality is equivalent

to the following definition: An estimating function Ψ ∈ C is optimal if

Eθ
(
J−C′ΨB−1

Ψ Ψ
) (

J−C′ΨB−1
Ψ Ψ

)′
≤ Eθ

(
J−C′

Ψ̃
B−1

Ψ̃
Ψ̃
)(

J−C′
Ψ̃

B−1

Ψ̃
Ψ̃
)′ (2.29)

for any Ψ̃ ∈ C, where J is the Fisher score. This definition allows for a geometric

interpretation of optimality. Suppose C is a closed subspace of the Hilbert space

L2(Pθ) (with inner product (Ψ1,Ψ2)θ = Eθ (Ψ′1Ψ2) and norm ‖Ψ‖θ = (Ψ,Ψ)1/2).

As noted above, the optimal estimating function in the class of all estimating func-

tions G is the Fisher score J. The optimal estimating function in the closed linear

span of a subset of G is the estimating function Ψ which is closest to the Fisher

score. That is, the optimal estimating function in C is

Ψ = Êθ (J C) , (2.30)

the orthogonal projection of the Fisher score into the space C.
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2.2 Fisher estimating functions

Let A = A(θ) be an s × s nonsingular matrix whose elements aij(θ) are

differentiable. If Ψ is an estimating function for P , then so is Φ = AΨ. The system

n∑
i=1

Φ(Xi;θ) = 0 (2.31)

is equivalent to
n∑
i=1

Ψ(Xi;θ) = 0. (2.32)

Since equation (2.31) and equation (2.32) will have the same solution, we say that

Φ is equivalent to Ψ. Thus, to choose Φ as an estimating function over Ψ is simply

a matter of preference.

There exists a special matrix A corresponding to the Fisher form of the es-

timating function equivalent to Ψ. We call Ψ a Fisher estimating function for P

if

IΨ(θ) = BΨ(θ) = CΨ(θ). (2.33)

The motivation for this definition is that Fisher estimating functions and the es-

timators they generate share some of the optimality properties as the Fisher score

and the maximum likelihood estimator.

If Ψ is an estimating function for P and the elements of CΨ(θ) and BΨ(θ)

are differentiable, then Ψ̂ = C′ΨB−1
Ψ Ψ is a Fisher estimating function equivalent to

Ψ, since

BΨ̂(θ) = Eθ

(
Ψ̂Ψ̂

′)
= C′ΨB−1

Ψ Eθ (ΨΨ′) B−1
Ψ CΨ = C′ΨB−1

Ψ CΨ (2.34)
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and

CΨ̂(θ) = −Eθ
(
∂

∂θ
Ψ̂

)
= −C′ΨB−1

Ψ Eθ

(
∂

∂θ
Ψ

)
= C′ΨB−1

Ψ CΨ. (2.35)

We call Ψ̂ the Fisher form of Ψ.

Theorem 2.2.1. If the matrices BΨ(θ) and CΨ(θ) are nonsingular with entries

that are differentiable in θ, there exists a unique Fisher form Ψ̂ of the estimating

function Ψ.

Proof. Suppose there exist two Fisher estimating functions, Ψ̂1 = A1Ψ and Ψ̂2 =

A2Ψ, which are both equivalent to Ψ. Then Ψ̂2 = A2A
−1
1 Ψ̂1. Since Ψ̂1 is a Fisher

estimating function,

CΨ̂2
(θ) = A2(θ)A−1

1 (θ)CΨ̂1
(θ) = A2(θ)A−1

1 (θ)BΨ̂1
(θ). (2.36)

Since Ψ̂2 is also assumed to be a Fisher estimating function,

CΨ̂2
(θ) = BΨ̂2

(θ) = A2(θ)A−1
1 BΨ̂1

(θ)A−1
1 (θ)′A2(θ)′. (2.37)

Therefore, A−1
1 (θ)′A2(θ)′ = Is×s, or A1(θ) = A2(θ).

2.3 Structural and nuisance parameters

Let θ′ = (θ′1,θ
′
2) where θ1 ∈ Θ1 ⊆ Rr is the parameter of interest, θ2 ∈ Θ2 ⊆

Rq is a nuisance parameter, and r + q = s. Consider the set G1 of all estimating

functions g : X ×Θ1 7→ Rr for θ1. Chandresekar and Kale ([9]) showed that for any

Ψ in G1,

I−1
Ψ (θ) ≥ I11(θ) (2.38)
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where I11(θ) is the r × r submatrix of the inverse of the Fisher information matrix

I−1(θ) corresponding to θ1 when I−1(θ) is partitioned according to the partition of

θ′ = (θ′1,θ
′
2).

Under certain regularity conditions, there exists an optimal estimating func-

tion in G1 ([11], [13]). Suppose there exists a statistic (S,U) which is sufficient for

θ. If the sufficient statistic has the property that the conditional distribution of S

given U, h(s,θ1|u), depends on θ only through θ1, and the family of probability

distributions {P (U)
θ } of U is complete for every fixed θ1, then the conditional Fisher

score function

l (x;θ1) =
∂

∂θ1

log h(s,θ1|u) (2.39)

will be the optimal estimating function in G1 for θ1.

We use the method of projection ([25], [34]) to minimize the effects of the

nuisance parameter θ2 when estimating the structural parameter θ1 using a general

estimating function. Let Ψ be a Fisher estimating function for P = {Pθ}. We

partition Ψ(x;θ) as,

Ψ(x;θ) =

Ψ1(x;θ)

Ψ2(x;θ)

 , (2.40)

BΨ(θ) as,

BΨ(θ) = IΨ(θ) =

B11(θ) B12(θ)

B21(θ) B22(θ)

 , (2.41)

and B−1
Ψ (θ) as

B−1
Ψ (θ) = I−1

Ψ (θ) =

B11(θ) B12(θ)

B21(θ) B22(θ)

 (2.42)
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with dimensions corresponding to the partition of θ.

Let Ψ̂1 = Ψ1− Êθ(Ψ1 Ψ2), where Êθ( • Ψ2) is the projection operator onto

the space spanned by the components of Ψ2. An element in the space spanned by

the components of Ψ2 can be written as C(θ)Ψ2, so to find Êθ (Ψ1 Ψ2), we need

to find the matrix C(θ) such that

Eθ ((Ψ1 −C(θ)Ψ2)′Ψ2) = 0. (2.43)

We can set C(θ) = B12(θ)B−1
22 (θ) to attain equality (2.43).

Ψ̂1 = Ψ1−B12B
−1
22 Ψ2 is sometimes called the efficient estimating function for

θ1 in the presence of θ2 based on the estimating function Ψ. This is due to the fact

that

Î1,Ψ(θ) = Eθ

(
Ψ̂1Ψ̂

′
1

)
= −Eθ

(
∂

∂θ1

Ψ̂1

)
= B11(θ)−B12(θ)B−1

22 (θ)B21(θ) =
(
B11(θ)

)−1
,

(2.44)

the inverse of the first block of matrix (2.42). We call the matrix Î1,Ψ(θ) the efficient

information on θ1 contained in the estimating function Ψ.

The next Theorem generalizes a result by Kagan and Rao ([25]) concerning

the efficient score function.

Theorem 2.3.1. (Superadditivity) Let X and Y be independent random vectors

and Ψ1 = Ψ1(X;θ) and Ψ2 = Ψ2(Y;θ) be Fisher estimating functions for the

parameter θ′ = (θ′1,θ
′
2). If Φ = Φ(X,Y;θ) = Ψ1(X;θ) + Ψ2(Y;θ),

Î1,Φ(θ) ≥ Î1,Ψ1(θ) + Î1,Ψ2(θ). (2.45)

If X and Y are identically distributed and Ψ1 = Ψ2 then (2.45) becomes an equality.
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Proof. The efficient information on θ1 contained in Φ is given by

Î1,Φ(θ) = Eθ
(
Φ1 − I12,ΦI−1

22,ΦΦ2

) (
Φ1 − I12,ΦI−1

22,ΦΦ2

)′
= Eθ

(
Ψ11 + Ψ21 − I12,ΦI−1

22,Φ (Ψ12 + Ψ22)
)

(
Ψ11 + Ψ21 − I12,ΦI−1

22,Φ (Ψ12 + Ψ22)
)′

= Eθ
(
Ψ11 − I12,ΦI−1

22,ΦΨ12

) (
Ψ11 − I12,ΦI−1

22,ΦΨ12

)′
+ Eθ

(
Ψ21 − I22,ΦI−1

22,ΦΨ22

) (
Ψ21 − I22,ΦI−1

22,ΦΨ22

)′
≥ Eθ

(
Ψ11 − I12,Ψ1I

−1
22,Ψ1

Ψ12

) (
Ψ11 − I12,Ψ1I

−1
22,Ψ1

Ψ12

)′
+ Eθ

(
Ψ21 − I12,Ψ2I

−1
22,Ψ2

Ψ22

) (
Ψ21 − I22,Ψ2I

−1
22,Ψ2

Ψ22

)′
= Eθ

(
Ψ̂1Ψ̂

′
1

)
+ Eθ

(
Ψ̂2Ψ̂

′
2

)
= Î1,Ψ1(θ) + Î1,Ψ2(θ).

(2.46)

The inequality follows from the fact that Êθ (Ψ11 Ψ12) = I12,Ψ1(θ)I
−1
22,Ψ1

(θ)Ψ12

which implies that for any r × q matrix A(θ),

Eθ (Ψ11 −A(θ)Ψ12) (Ψ11 −A(θ)Ψ12)′

≥ Eθ
(
Ψ11 − I12,Ψ1(θ)I−1

22,Ψ1
(θ)Ψ12

) (
Ψ11 − I12,Ψ1(θ)I−1

22,Ψ1
(θ)Ψ12

)′
.

(2.47)

If Ψ1 = Ψ2 and X and Y are identically distributed, then

I12,Φ(θ)I−1
22,Φ(θ) = (I12,Ψ1(θ) + I12,Ψ2(θ)) (I22,Ψ1(θ) + I22,Ψ2(θ))−1

= I12,Ψ1(θ)I−1
22,Ψ1

(θ)

= I12,Ψ2(θ)I−1
22,Ψ2

(θ).

(2.48)

Therefore we have equality in equation (2.45).

In general, Ψ̂1 = Ψ̂1(x;θ1,θ2) depends on both the structural and the nuisance

parameter. For fixed θ2, Ψ̂1 is a Fisher estimating function for θ1, and the equation

n∑
i=1

Ψ̂1 (Xi;θ1,θ2) = 0 (2.49)
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will have a solution θ̂1 = θ̂1(X1, . . . ,Xn,θ2). The advantage of this method is that

when we have an initial
√
n−consistent estimate, θ∗2 = θ∗2(X1, . . . ,Xn) of θ2, (that

is
√
n (θ∗2 − θ2) = Op(1), or equivalently, given ε > 0 there exists a constant Cε

such that sup
n
P (‖
√
n(θ∗2 − θ2)‖ > Cε) < ε), the estimator θ̂n(X1, . . . ,Xn,θ

∗
2) will

be efficient.

Theorem 2.3.2. Suppose

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

∂Ψ̂1

∂θj
(Xi;θ)− E

(
∂Ψ̂1

∂θj
(x;θ)

)∥∥∥∥∥ = op(1) (2.50)

as n −→∞, and mj(θ) = E
(
∂/∂θjΨ̂1(x;θ)

)
is continuous in θ for j = 1, 2. If θ∗2

is an initial estimator of θ2 such that
√
n(θ∗2 − θ2) = Op(1), a consistent solution

θ̂1 of the equation
n∑
i=1

Ψ̂1(Xi;θ1,θ
∗
2) = 0 (2.51)

satisfies

√
n(θ̂1 − θ1)

d−→ Nr

(
0,B11(θ)

)
(2.52)

as n −→∞.

Proof. Let θ̂1 be a consistent solution to (2.51). Expanding (2.51) in a Taylor series

around the point (θ1,θ2) gives

0 =
1√
n

n∑
i=1

Ψ̂1

(
Xi; θ̂1,θ

∗
2

)
=

1√
n

n∑
i=1

Ψ̂1(Xi;θ1,θ2) +

√
n

n

n∑
i=1

∂Ψ̂1

∂θ1

(Xi; θ̃1, θ̃2)(θ̂1 − θ1)

+

√
n

n

n∑
i=1

∂Ψ̂1

∂θ2

(Xi; θ̃1, θ̃2)(θ∗2 − θ2)

(2.53)

21



for some θ̃ = (θ̃1, θ̃2) between (θ̂1,θ
∗
2) and (θ1,θ2). By (2.50),∥∥∥∥∥ 1

n

n∑
i=1

∂Ψ̂1

∂θ2

(
Xi; θ̃

)
−m2 (θ)

∥∥∥∥∥ ≤ sup
θ

∥∥∥∥∥ 1

n

n∑
i=1

∂Ψ̂1

∂θ2

(Xi;θ)−m2 (θ)

∥∥∥∥∥
+
∥∥∥m2

(
θ̃
)
−m2 (θ)

∥∥∥ = op(1)

(2.54)

since (θ̃1, θ̃2) converges in probability to θ and m2 (θ) is assumed continuous. There-

fore,

1

n

n∑
i=1

∂Ψ̂1

∂θ2

(Xi; θ̃1, θ̃2)
p−→ Eθ

(
∂Ψ̂1

∂θ2

(x;θ1,θ2)

)

= Eθ

(
∂Ψ1

∂θ2

(x;θ1,θ2)

)
−B12B

−1
22 Eθ

(
∂Ψ2

∂θ2

(x;θ1,θ2)

)
= −C12 + B12B12B

−1
22 C22 = −B12 + B12B

−1
22 B22

= 0.

(2.55)

Then, since
√
n (θ∗2 − θ2) = Op(1), the last term in (2.53) is op(1). Similarly,

1

n

n∑
i=1

∂Ψ̂1

∂θ1

(Xi; θ̃1, θ̃2)
p−→ Eθ

(
∂Ψ̂1

∂θ1

(Xi;θ1,θ2)

)

= Eθ

(
∂Ψ1

∂θ1

(x;θ1,θ2)

)
−B12B

−1
22 Eθ

(
∂Ψ2

∂θ1

(x;θ1,θ2)

)
= −C11 + B12B12B

−1
22 C21 = −B11 + B12B

−1
22 B21

= −(B11)−1.

(2.56)

Rearranging (2.53) gives

√
n(θ̂1 − θ1) =

1√
n

(
1

n

n∑
i=1

∂Ψ̂1

∂θ1

(Xi; θ̃1, θ̃2)

)−1 n∑
i=1

Ψ̂1(Xi;θ1,θ2) + op(1)

= −B11 1√
n

n∑
i=1

Ψ̂1(Xi;θ1,θ2) + op(1).

(2.57)

proving (2.52).

The next example, due to Kagan and Rao ([25]), shows that the efficient esti-

mating function can be a useful tool in calculating a statistic for the full parameter
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θ′ = (θ′1,θ
′
2). Consider the standard linear regression model

X = Aθ + ε (2.58)

where X is an observable n× 1 random vector, A is a known design matrix of order

n × s of full rank s ≤ n, and ε is an n × 1 vector of errors with Eθ (ε) = 0 and

Varθ (ε) = σ2In×n, σ2 unknown.

The least-squares estimator of θ,

θ̂n = (A′A)
−1

A′X (2.59)

is the solution of the estimating equation

Ψ (X;θ) = A′ (X−Aθ) = 0 (2.60)

and is the best linear unbiased estimator (BLUE) of θ in the sense that for any

linear estimator θ̃n = BX,

Varθ

(
θ̂n

)
= σ2 (A′A)

−1 ≤ Varθ

(
θ̃n

)
. (2.61)

The best linear estimating function for θ is

Jlin = Êθ (J | X) =
1

σ2
A′ (X−Aθ) , (2.62)

which is the Fisher form of the estimating function in equation (2.60). We partition

A = (A1 A2) and J′lin =
(
J′1,lin,J

′
2,lin

)
according to the partition of θ′ = (θ′1,θ

′
2).

The information on θ contained in the estimating function Jlin is

Ilin = Eθ (JlinJ
′
lin) =

1

σ2
A′A =

1

σ2

A′1A1 A′1A2

A′2A1 A′2A2

 =
1

σ2

I11 I12

I21 I22

 (2.63)
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which is independent of θ.

The efficient estimating function for θ1 in the presence of θ2 based on the

estimating function Jlin is

Ĵ1,lin = J1,lin − Êθ (J1,lin | J2,lin)

=
1

σ2
A′1 (X−Aθ)− 1

σ2
(A′1A2) (A′2A2)

−1
A′2 (X−Aθ)

=
1

σ2

(
A′1 − (A′1A2) (A′2A2)

−1
A2

)
X

− 1

σ2

(
A′1A1 − (A′1A2) (A′2A2)

−1
A′2A1

)
θ1

=
1

σ2

(
A′1 − I12I

−1
22 A′2

)
X− 1

σ2

(
I11
)−1

θ1

(2.64)

which is independent of θ2. The estimating equation

Ĵ1,lin = 0 (2.65)

has solution

θ̂1 = I11
(
A′1 − I12I

−1
22 A′1

)
X. (2.66)

Similarly, Ĵ2,lin is independent of θ1, and the estimating equation

Ĵ2,lin = 0 (2.67)

has solution

θ̂2 = I22
(
A′2 − I12I

−1
22 A′1

)
X. (2.68)

Simple calculations show that the variance of (θ̂
′
1, θ̂

′
2)′ is σ2 (A′A)−1 and that

θ̂
′
n =

(
θ̂
′
1, θ̂

′
2

)
. However, calculating θ̂n from (2.60) requires inverting one s ×

s matrix, while calculating θ̂1 and θ̂2 separately from (2.65) and (2.67) requires

inverting an r × r matrix and a p × p matrix. The computational complexity of
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inverting an s× s matrix is Cs2+δ for some constants C > 0 and 0 < δ < 1. Thus, if

r = q = s/2 the computational complexity of generating θ̂n from (2.60) is 2δ times

higher than first partitioning the parameter and then estimating the subvectors

separately using (2.65) and (2.67).
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Chapter 3

Estimating functions for location parameter families

3.1 Equivariant estimators

In Chapter 2 we described optimality of an estimation problem in terms of the

estimating function and the information matrix, rather than in terms of the statistic

itself. The loss function and the risk function are tools for measuring the quality of

an estimator g̃ for g = g(θ) based on the statistic instead of the estimating function.

The loss incurred by estimating g(θ) by g̃ is measured by a loss function L(g̃; g).

Typically L(g̃; g) ≥ 0 and L(g̃; g) attains its minimum value in g at g = g̃. Two

common examples of loss functions are

1.

L(g̃; g) =| g̃(x)− g(θ) |p, p > 0

2.

L(g̃; g) =


1 if | g̃(x)− g(θ)| ≥ ∆

0 if | g̃(x)− g(θ)| < ∆

for ∆ > 0.

The first loss function is the squared error loss when p = 2 and the mean value loss

when p = 1. The second loss function is known as ‘0-1’ loss.

If g̃(X) is an estimator for g(θ), its performance is measured by the expected
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loss, called the risk:

R(g̃; g) = Eθ (L(g̃; g)) =

∫
X
L(g̃(x); g(θ))dPθ(x). (3.1)

The risk corresponding to the first loss function when p = 2 is the mean squared

error, Eθ (g̃(X)− g(θ))2, and the risk corresponding to the second loss function is

Pθ (| g̃(X)− g(θ)| ≥ ∆).

We would like to find an estimator for g(θ) which minimizes the risk function

for all values of θ ∈ Θ. Unfortunately, such a statistic does not exist in general.

For example, let g̃(X) = g(θ0) for some fixed number θ0. The risk of this estimator

will be close to 0 for values of θ that are close to θ0 but will likely be very large for

other values of the parameter. For this reason we need to restrict our attention to

a smaller class of estimators which possess certain characteristics.

In what follows, we will consider the class of equivariant estimators. The

motivation for the use of an equivariant estimator can found in [8]. Equivariant

estimators are appropriate for problems in which certain symmetries exist; they

also have the advantage that in many cases there exists a best equivariant estimator

which minimizes the risk uniformly for all values of θ.

First, consider the case where the parameter µ is a location parameter. If

(R,B(R), P ) is a probability space and X is a random variable in R distributed

according to the probability measure P , then for any µ ∈ R, the random variable

X + µ will be distributed according to the probability measure Pµ where Pµ(B) =

P (B − µ) for any B ∈ B(R). The family P = {Pµ : µ ∈ R} is called a location

family. We can assume without loss of generality that Eµ (X) = µ.
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Let X = (X1, . . . , Xn) be a random sample from Pµ ∈ P and let T (X) be

an estimator of µ. Suppose that instead of µ, we wish to estimate µ + a for some

a ∈ R. Two reasonable approaches to this estimation problem are to estimate µ+ a

by T (X) + a, or to first transform the data with X̃i = Xi + a and use T (X + a) as

our estimator. We call a statistic location equivariant if

T (X1 + a, . . . , Xn + a) = T (X1, . . . , Xn) + a (3.2)

for any a ∈ R. If (3.2) is violated, then the estimation problem depends on the

choice of the origin in R (see also [17], ch. 2).

When the loss function is squared error loss, there exists an equivariant es-

timator of µ which minimizes the risk uniformly for any µ ∈ R. The estimator is

called the Pitman estimator, and it is given by

tn = X − E0

(
X | X1 −X, . . . , Xn −X

)
. (3.3)

If the density function f(x− θ) exists, then (3.3) can be written in integral form as

tn =

∫
uf(X1 − µ) · · · f(Xn − µ)du∫
f(X1 − u) · · · f(Xn − u)du

. (3.4)

The Pitman estimator of a univariate location parameter is unbiased and effi-

cient ([29], [37]). That is,

√
n (tn − µ)

d−→ N

(
0,

1

I(f)

)
(3.5)

as n −→∞, where

I(f) =

∫ (
f ′(x)

f(x)

)2

f(x)dx (3.6)

is the Fisher information of a location parameter.
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If, in addition, there exists an equivariant estimator t̃n of µ such that

Eµ | t̃n − µ |3 <∞, (3.7)

the Pitman estimator of µ is also admissible under quadratic loss in the entire class

of estimators of µ ([36]). That is, if µ̂n = µ̂n(X1, . . . , Xn) is any estimator of µ such

that

Eµ (µ̂n − µ)2 ≤ Eµ (tn − µ)2 (3.8)

for all µ ∈ R, then

Eµ (µ̂n − µ)2 = Eµ (tn − µ)2 (3.9)

for almost all µ.

In the class of all distributions F with fixed finite variance σ2, the risk of

the Pitman estimator is maximized when tn = X. If F is Gaussian, then X is

independent of the vector of residuals (X1 −X, . . . , Xn −X), so

E0

(
X | X1 −X, . . . , Xn −X

)
= 0, (3.10)

hence the normal distribution is a ‘least favorable’ distribution. It was shown by

Kagan, et al. ([21], [22]) that if n ≥ 3, the normal distribution is the unique

distribution for which tn = X.

3.2 Location-scale families

Let (R,B(R), P ) be a probability space and let X be a random variable in R

distributed according to the probability measure P . For any µ ∈ R and any σ ∈ R+,

the random variable σX+µ will be distributed according to the probability measure
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Pµ,σ, where Pµ,σ(B) = P (1/σ(B − µ)) for any B ∈ B(R). We call such a family

P = {Pµ,σ : µ ∈ R, σ ∈ R+} a location-scale family. For the purpose of this section,

the location parameter µ is the parameter of interest and the scale parameter σ

is a nuisance parameter. As before, we can assume without loss of generality that

Eµ,σ(X) = µ for all µ ∈ R and σ ∈ R+.

3.2.1 Modified Pitman estimator

Let θ = (µ, σ)′. For a location-scale family, the Fisher information matrix is

of the form

I(θ) =
1

σ2


∫ f ′(x)2

f(x)
dx

∫
xf
′(x)2

f(x)
dx∫

xf
′(x)2

f(x)
dx

∫ (xf ′(x)+f(x))2

f(x)
dx

 =
1

σ2

I11 I12

I21 I22

 , (3.11)

which is independent of µ and depends on σ only through the coefficient 1/σ2. The

inverse of this matrix has the form

I−1(θ) = σ2

I11 I12

I21 I22

 (3.12)

where I11 = (I11 − I12I
−1
22 I21)−1. This gives us the Cramér-Rao lower bound for

the variance of any unbiased estimator of µ in the presence of the nuisance scale

parameter σ of σ2I11.

Let X = (X1, . . . , Xn) be a random sample from Pµ,σ. Denote an estimator for

µ by µ̂n = µ̂n(X1, . . . , Xn). As in the previous section, we will restrict our attention

to equivariant estimators of µ. For the location-scale family, an estimator µ̂n is

equivariant if for any a ∈ R and any b ∈ R+ we have

µ̂n(bX1 + a, . . . , bXn + a) = bµ̂n(X1, . . . , Xn) + a. (3.13)
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We will compare estimators using the quadratic loss function

L(µ̂; θ) =

(
µ̂− µ
σ

)2

. (3.14)

Notice that for any equivariant estimator µ̂n, the risk function is independent of the

parameter, since

EθL(µ̂; θ) =

∫
Rn

(
µ̂n(x1, . . . , xn)− µ

σ

)2 n∏
i=1

1

σ
f

(
xi − µ
σ

)
dx

=

∫
Rn

(
µ̂n(σx1 + µ, . . . , σxn + µ)− µ

σ

)2 n∏
i=1

f(xi)dx

=

∫
Rn

(
σµ̂n(x1, . . . , xn) + µ− µ

σ

)2 n∏
i=1

f(xi)dx

=

∫
Rn
µ̂2
n(x)f(x)dx.

(3.15)

Finding a best equivariant estimator with respect to the squared error loss function

amounts to minimizing E0,1µ̂
2(X) over the class of equivariant estimators. It can

be shown (see [8]) that the Pitman estimator of µ in the presence of the nuisance

parameter σ has the form

t̂n(X1, . . . , Xn) = X −
E0,1

(
XS X1−X

S
, . . . , Xn−X

S

)
E0,1

(
S2 X1−X

S
, . . . , Xn−X

S

) , (3.16)

where S is the sample standard deviation.

The Pitman estimator of µ has the property that

√
n
(
t̂n − µ

) d−→ N

(
0,
σ2

Î1

)
, (3.17)

where Î1 = I11−I12I
−1
22 I21. Since the asymptotic distribution is Gaussian, with mean

0 and variance which achieves the Cramér-Rao lower bound, the Pitman estimator

of µ is an efficient estimator.
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The goal of the remainder of this section is to construct an equivariant estima-

tor t̃n of µ, which we will call the modified Pitman estimator, that is asymptotically

as good as the Pitman estimator t̂n. Since the Pitman estimator is the best equiv-

ariant estimator, we will necessarily have that R(t̂n, µ) ≤ R(t̃n, µ). However, the

modified estimator has the advantage that it has an explicit form that is easier to

work with.

In the location model, a version of the Pitman estimator was constructed by

modifying the score equation using an iterative approach based on the Newton-

Raphson algorithm (see [18] and [20]). In the location model, the maximum likeli-

hood estimator µ̂n is the solution of the likelihood equation

n∑
i=1

−f
′(Xi − µ)

f(Xi − µ)
=

n∑
i=1

−J(Xi − µ) = 0. (3.18)

Applying the iterative procedure to (3.18), and replacing µ with the
√
n−consistent

initial estimate of µ, X, we obtain the statistic

X +
1∑n

i=1 J
′(Xi −X)

n∑
i=1

J(Xi −X). (3.19)

Finally, we can replace J ′ with its expectation −I, the Fisher information, to obtain

the modified Pitman estimator

µ̃n = X − 1

nI

n∑
i=1

J(Xi −X). (3.20)

The modified Pitman estimator is an equivariant, efficient estimator of µ.

For the location-scale model, the maximum likelihood estimator is the solution
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to the pair of equations
n∑
i=1

− 1

σ
J

(
Xi − µ
σ

)
=

n∑
i=1

J1(Xi;µ, σ) = 0

n∑
i=1

[
− 1

σ
− (Xi − µ)

σ2
J

(
Xi − µ
σ

)]
=

n∑
i=1

J2(Xi;µ, σ) = 0

(3.21)

where as before, J(x) = f ′(x)/f(x).

Since we are interested only in estimation of µ, and regard σ as a nuisance

parameter, we need to eliminate σ in our estimating function. To generate an

estimating function for µ, we can use the method of projection discussed in Section

2.3. Let Ĵ1 = J1 − Êθ(J1|J2) where the operator Ê is the projection operator

onto the space spanned by J2. Since Eθ
(
(J1 − I12I

−1
22 J2)J2

)
= 0 it follows that

Ĵ1 = J1 − I12I
−1
22 J2, where I11 and I22 are the elements of the Fisher information

matrix (3.11).

We can apply the same iterative procedure to Ĵ1 to get the expression

µ− 1∑n
i=1

∂Ĵ1

∂µ
(Xi;µ, σ)

n∑
i=1

Ĵ1 (Xi;µ, σ) . (3.22)

Replacing Ĵ ′1 with its expectation −1/σ2Î1 = −1/σ2(I11− I12I
−1
22 I21), µ with X, and

σ with S, we get the modified Pitman estimator

t̃n(X1, . . . , Xn)

= X − S

nÎ

n∑
i=1

[
J

(
Xi −X

S

)
− I12

I22

(
1 +

Xi −X
S

J

(
Xi −X

S

))]

= X − S

nÎ

n∑
i=1

ϕ

(
Xi −X

S

)
.

(3.23)

Theorem 3.2.1. Suppose EX4 < ∞ and J is twice differentiable with |J (k)((x −

µ)/σ)| ≤ hk(x), k = 1, 2, for all µ and σ, where Eh2
k(x) <∞. Then

√
n
(
t̃n − µ

) d−→ N

(
0,
σ2

Î1

)
as n −→∞. (3.24)
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Proof. Expand ϕ in a Taylor series around the point (µ, σ) to get

√
n(t̃n − µ) =

√
n(X − µ)−

√
nS

nÎ1

n∑
i=1

ϕ

(
Xi −X

S

)

=
√
n(X − µ)− S

√
nÎ1

n∑
i=1

ϕ

(
Xi − µ
σ

)

−
√
nS

nÎ1

n∑
i=1

{
∂ϕ

∂µ

(
Xi − µ
σ

)
(X − µ)− ∂ϕ

∂σ

(
Xi − µ
σ

)
(S − σ)

}

−
√
nS

nÎ1

n∑
i=1

{
∂2ϕ

∂µ2

(
Xi − µ∗

σ∗

)
(x− µ)2 − ∂2ϕ

∂σ2

(
xi − µ∗

σ∗

)
(S − σ)2

}

−
√
nS

2nÎ1

n∑
i=1

∂2ϕ

∂µ∂σ

(
xi − µ∗

σ∗

)
(x− µ)(S − σ)

(3.25)

for some vector (µ∗, σ∗)′ between (µ, σ)′ and (x, S)′. Since

∂2ϕ

∂µ2

(
x− µ
σ

)
=

1

σ2
J ′′
(
x− µ
σ

)[
1− I12

I22

(
x− µ
σ

)]
− 2

σ2

I12

I22

J ′
(
x− µ
σ

)
(3.26)

and we have assumed that J (k)((x − µ)/σ) ≤ hk(x) for all µ and σ, by the law of

large numbers and the Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

∂2ϕ

∂µ2

(
xi − µ∗

σ∗

)

≤ 1

σ∗2
1

n

n∑
i=1

J
′′
(
Xi − µ∗

σ∗

)[
1− I12

I22

(
Xi − µ∗

σ∗

)]

+
I12

I22

2

σ∗3
1

n

n∑
i=1

J ′
(
Xi − µ∗

σ∗

)

≤ 1

σ∗3
1

n

n∑
i=1

(
h2(Xi) +

I12

I22

| Xi − µ | h2(Xi) +
|µ∗ − µ|
σ∗3

I12

I22

h2(Xi)

)

+
2

σ∗2
I12

I22

1

n

n∑
i=1

h1(Xi)

p−→ 1

σ3
Eh2(x) +

1

σ3

I12

I22

E | x− µ | h(x) +
2

σ3

I12

I22

Eh1(x)

≤ 1

σ
Eh2(x) +

1

σ3

I12

I22

(
E(x− µ)2Eh2

2(x)
)1/2

+
2

σ3

I12

I22

Eh1(x) <∞.

(3.27)
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Therefore,
√
nS

nÎ1

n∑
i=1

∂2ϕ

∂µ2

(
xi − µ∗

σ∗

)
(x− µ)2 = op(1). (3.28)

The remaining terms involving second order derivatives can be handled in a similar

fashion, and the expansion (3.25) can be written as

√
n(t̃n − µ) =

√
n(X − µ)−

√
nS

nÎ1

n∑
i=1

ϕ

(
Xi −X

S

)

=
√
n(X − µ)− S

√
nÎ1

n∑
i=1

ϕ

(
Xi − µ
σ

)

−
√
nS

nÎ1

n∑
i=1

∂ϕ

∂µ

(
Xi − µ
σ

)
(X − µ)

−
√
nS

nÎ1

n∑
i=1

∂ϕ

∂σ

(
Xi − µ
σ

)
(S − σ) + op(1)

=
√
n(X − µ)− S

√
nÎ1

n∑
i=1

ϕ

(
Xi − µ
σ

)
−
√
n(X − µ) + op(1)

= − S
√
nÎ1

n∑
i=1

ϕ

(
Xi − µ
σ

)
+ op(1)

d−→ N

(
0,
σ2

Î1

)
.

(3.29)

The second to last line follows from the fact that

− 1

n

n∑
i=1

∂ϕ

∂µ

(
Xi − µ
σ

)

=
1

n

n∑
i=1

∂

∂µ

[
−J
(
Xi − µ
σ

)
+ I12I

−1
22

(
1 +

(
Xi − µ
σ

)
J

(
Xi − µ
σ

))]

=
σ

n

n∑
i=1

∂

∂µ
J1 (Xi;µ, σ)− σ

n

n∑
i=1

∂

∂µ
J2 (Xi;µ, σ)

p−→ σEθ

(
∂

∂µ
J1 (x;µ, σ)

)
− σI12I

−1
22 Eθ

(
∂

∂µ
J2 (x;µ, σ)

)
= − σ

σ2
I11 +

σ

σ2
I12I

−1
22 I21 = − 1

σ

(
I11 − I12I

−1
22 I21

)
= − Î1

σ
,

(3.30)
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and

− 1

n

n∑
i=1

∂ϕ

∂σ

(
Xi − µ
σ

)

=
1

n

n∑
i=1

∂

∂σ

[
J

(
Xi − µ
σ

)
− I12I

−1
22

(
1 +

(
Xi − µ
σ

)
J

(
Xi − µ
σ

))]

=
1

n

n∑
i=1

∂

∂σ

[
−σJ1 (Xi;µ, σ) + σI12I

−1
22 J2 (Xi;µ, σ)

]
= − 1

n

n∑
i=1

J1(Xi;µ, σ)− 1

n

n∑
i=1

∂

∂σ
J1(Xi;µ, σ) +

1

n
I12I

−1
22

n∑
i=1

J2(Xi;µ, σ)

+
σ

n
I12I

−1
22

n∑
i=1

∂

∂σ
J2(Xi;µ, σ)

p−→ −EθJ1(x;µ, σ)− σEθ
(
∂

∂σ
J1(x;µ, σ)

)
+ I12I

−1
22 EθJ2(x;µ, σ)

+ σI12I
−1
22 Eθ

(
∂

∂σ
J2(x;µ, σ)

)
= 0 +

σ

σ2
I12 + 0− σ

σ2
I12I

−1
22 I22 =

1

σ
(I12 − I12) = 0,

(3.31)

and the fact that
√
n(S − σ) = Op(1).

The proof of Theorem (3.2.1) depends mainly on the fact that the Fisher

score is a Fisher estimating function. For this reason, Theorem (3.2.1) can be

generalized to the case when our estimator is generated by an arbitrary Fisher

estimating function of the form

Φ(X;µ, σ) = − 1

σ

Φ1

(
X−µ
σ

)
Φ2

(
X−µ
σ

)
 . (3.32)

The covariance matrix of (3.32) is of the form

BΦ(θ) =
1

σ2

B11 B12

B21 B22

 (3.33)
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which is also independent of µ and depends on σ only through the coefficient 1/σ2.

Let Φ̂1 = Φ1 − Êθ (Φ1 Φ2) = Φ1 −B12B
−1
22 Φ2. The statistic

w̃n = X − S

nB̂1

n∑
i=1

Φ̂1

(
Xi −X

S

)
(3.34)

is an equivariant estimator of µ and has the property that

√
n (w̃n − µ)

d−→ N

(
0,
σ2

B̂1

)
(3.35)

where B̂1 = B11 −B12B
−1
22 B21.

3.2.2 Polynomial Pitman estimator

Let

Z =

(
X1 −X

S
, · · · , Xn −X

S

)
(3.36)

be the standardized residuals and

Ck = {µ̃n = X + SQ(Z) | Q is a polynomial of degree ≤ k}. (3.37)

The class Ck is the class of equivariant polynomial estimators of degree ≤ k of a

location parameter µ in the presence of a nuisance scale parameter σ. For any

µ̃n ∈ Ck, under quadratic loss,

Eµ,σ

(
µ̃n − µ
σ

)2

= E0,1 (µ̃n)2 , (3.38)

so that the risk is constant, and we should expect that there is an estimator that

minimizes this risk.
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Let Λk be the closed linear span of all functions of the form SQ(Z) where Q

is any polynomial of degree at most k. For any µ̃n = X + SQ(Z) ∈ Ck we have

E0,1(X + SQ(Z))2 = E0,1

(
X − Ê0,1

(
X | Λk

)
+ Ê0,1

(
X | Λk

)
+ SQ(Z)

)2

= E0,1

(
X − Ê0,1

(
X | Λk

))2

+ E0,1

(
Ê0,1

(
X | Λk

)
+ SQ(Z)

)2

+ 2E0,1

(
X − Ê0,1

(
X | Λk

))(
Ê0,1

(
X | Λk

)
+ SQ(Z)

)
≥ E0,1

(
X − Ê0,1

(
X | Λk

))2

+ 2E0,1

(
X − Ê0,1

(
X | Λk

))(
Ê0,1

(
X + SQ(Z) | Λk

))
= E0,1

(
X − Ê0,1

(
X | Λk

))2

(3.39)

where the last line follows from the fact that X − Ê0,1

(
X | Λk

)
is orthogonal to

every element in Λk. Since

µ̂(k)
n = X − Ê0,1

(
X | Λk

)
(3.40)

uniformly minimizes the risk in the class Ck, we call µ̂
(k)
n the polynomial Pitman

estimator of a location parameter µ in the presence of a scale parameter σ. The

polynomial Pitman estimator is asymptotically Gaussian:

√
n
(
µ̂(k)
n − µ

) d−→ N

(
0,

σ2

Î
(k)
1

)
. (3.41)

It will be explained below that Î
(k)
1 /σ2 is the information on µ in the presence of σ

contained in the space of polynomials of degree at most k. This means that µ̂
(k)
n is

not only optimal in the class Ck, but also efficient as an estimator of µ.

The polynomial Pitman estimator may have a complicated structure and it

may be difficult to calculate the coefficients explicitly. In this section we consider
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equivariant polynomial estimators of a location parameter in the presence of a nui-

sance scale parameter with simpler structure that are asymptotically efficient in the

space of polynomials of degree ≤ k.

One such estimator was constructed by Kagan et al. (see [24]). This estimator

can be written as

µ̃(k)
n = X + S

k∑
j=2

Âjgj (3.42)

where gj = 1/n
n∑
i=1

[(Xi − X)/S]j and the constants Âj depend only on the quan-

tities γi =
∫
xidF (x/σ)/

(∫
x2dF (x/σ)

)i/2
for i = 1, . . . , 2k. µ̃

(k)
n is asymptotically

equivalent to the polynomial Pitman estimator in the sense that

Eθ
(√

n
(
µ̃(k)
n − µ̂(k)

n

))
= o(1) (3.43)

as n −→∞.

We will construct an alternative estimator using the methods of Section 3.2.1.

To do this, we will first need to review some results concerning estimators and

information on a general finite-dimensional linear space H and apply these ideas to

the case when H = Span{1, x, . . . , xk}.

In [19], Kagan considers estimation of a general finite-dimensional parameter

θ when the estimator is an element of a finite-dimensional Hilbert space H. Let

P = {Pθ : θ ∈ R2} be a family of probability measures indexed by a bivariate

parameter θ = (θ1, θ2)′. Let H = Span{1, x, . . . , xk} be the closed linear span of the

elements 1, . . . , xk. On H we specify the family of scalar products

{
(ϕ1, ϕ2)θ =

∫
X
ϕ1ϕ2dPθ : θ ∈ R2, ϕ1, ϕ2 ∈ H

}
. (3.44)
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Let πij(θ) = (xi, xj)θ, i, j = 1, . . . , k, and πi(θ) = (xi, 1)θ for i = 1, . . . , k. We

assume that the functions πij(θ) are differentiable in θ, πi(θ) are twice differentiable

in θ, and that the Gram matrix
π11(θ) · · · π1k(θ)

· · · · · · · · ·

πk1(θ) · · · πkk(θ)

 (3.45)

is nonsingular for all θ ∈ Θ.

Let

Λ(r,q)(θ) =



0 ∂
∂θr
π1(θ) · · · ∂

∂θr
πk(θ)

∂
∂θq
π1(θ) π11(θ) · · · π1k(θ)

· · · · · · · · · · · ·

∂
∂θq
πk(θ) πk1(θ) · · · πkk(θ)


(3.46)

for r, q = 1, 2 and let Λ
(r,q)
i,j (θ), i, j = 1, . . . , k + 1 be the cofactors of the matrix

Λ(r,q)(θ). The functions

Jr = Jr (H;θ) = −
k∑
i=1

Λ
(r,r)
1,i+1(θ)

Λ
(r,r)
11 (θ)

xi, r = 1, 2, (3.47)

are the unique functions in H which satisfy

(Jr, ϕ)θ =
∂

∂θr
(ϕ, 1)θ , r = 1, 2, (3.48)

for all ϕ ∈ H and all θ. It can be shown that the functions Jr (H;θ) are the

projections of the Fisher score onto the space H. That is, J1(θ;H) = Êθ (J1 | H)

and J2(θ;H) = Êθ (J2 | H). The vector J(H;θ) = (J1(H;θ), J2(H;θ))′ ∈ H ×H is

the called score vector of the space H.
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The functions J1(θ;H) and J2(θ;H) have 0 expectation and

(Jr, Jq)θ = −
(
∂

∂θq
Jr, 1

)
θ

. (3.49)

Therefore, the the score vector of the space H satisfies all the properties of a Fisher

estimating function. The corresponding polynomial estimating equation

n∑
i=1

J (θ;Hi) = 0 (3.50)

will have a solution θ̃n, which is not necessarily a polynomial, such that

√
n
(
θ̃n − θ

)
d−→ N2

(
0, I−1 (θ;H)

)
(3.51)

as n −→∞.

The 2× 2 matrix I(θ;H) = [Irq(θ;H)], where

Irq(θ;H) = (Jr(θ;H), Jq(θ;H))θ , r, q = 1, 2, (3.52)

is called the information on θ contained in the space H. An explicit formula for the

elements of the information matrix is given by

Irq(θ;H) = − Λ(r,q)(θ)

Λ11(θ)
, r, q = 1, 2. (3.53)

The information on θ contained in the space H has some of the same properties as

the Fisher information matrix such as additivity and monotonicity.

A version of the Cramér-Rao inequality exists for unbiased estimators ϕ =

(ϕ1, ϕ2)′ ∈ H×H of θ. Let Bϕ(θ;H) = Eθ
[
(ϕ− θ) (ϕ− θ)′

]
. For any ϕ ∈ H×H

such that (ϕi, 1)θ = θi, i = 1, 2,

Bϕ (θ;H) ≥ I−1 (θ,H) =

I11 (θ;H) I12 (θ;H)

I21 (θ;H) I22 (θ;H)

 . (3.54)
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This can be proved by using fact that any covariance matrix is non-negative definite:

0 ≤ Eθ
(
ϕ− θ − I−1 (θ;H) J(θ;H)

) (
ϕ− θ − I−1(θ;H)J(θ;H)

)′
= Bϕ (θ;H)− I−1(θ;H)Eθ (J(θ;H),ϕ)− Eθ (ϕ,J(θ;H)) I−1(θ;H)

+ I−1(θ;H)Eθ (J(θ;H)J(θ;H)′) I−1(θ;H)

= B(θ;H)− I−1(θ;H)
∂

∂θ
Eθϕ−

∂

∂θ
EθϕI−1(θ;H) + I−1(θ;H)

= B(θ;H)− I−1(θ;H).

(3.55)

It follows that for any unbiased estimator ϕ1 ∈ H of θ1,

(ϕ1, 1)θ ≥ I11 (θ;H) . (3.56)

Suppose P = {Pθ : θ = (µ, σ)′ ∈ R × R+} is a location-scale family and that

the probability measures Pθ are absolutely continuous with respect to some sigma-

finite measure ν so that the densities 1/σf((x−µ)/σ) exist. Let J1(x) = f ′(x)/f(x)

and J2(x) = (1 + xf ′(x)/f(x)). We assume that both J1 and J2 belong to L2(f).

The functions

− 1

σ
J1

(
x− µ
σ

)
(3.57)

and

− 1

σ
J2

(
x− µ
σ

)
(3.58)

are the Fisher score functions for µ and σ respectively.

Let

J
(k)
1 = Êθ

(
− 1

σ
J1

(
x− µ
σ

)
H
)

(3.59)

and

J
(k)
2 = Êθ

(
− 1

σ
J2

(
x− µ
σ

)
H
)

(3.60)
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be the polynomial versions of the Fisher score and Ĵ
(k)
1 = J

(k)
1 − Êθ

(
J

(k)
1 J

(k)
2

)
be

the polynomial version of the efficient Fisher score for the location parameter µ in

the presence of the nuisance scale parameter σ.

Let αj =
∫
xjf(x)ν(dx) < ∞ for j = 1, . . . , 2k. The function J

(k)
1 can be

written in the form

c0(θ) + c1(θ)

(
x− µ
σ

)
+ · · ·+ ck(θ)

(
x− µ
σ

)k
. (3.61)

The coefficients c0(θ), . . . , ck(θ) are determined by the system of equations

Eθ

((
J1 − Ĵ (k)

1

)(x− µ
σ

)j)

= Eθ

(
J1

(
x− µ
σ

)j)
− c0(θ)Eθ

(
x− µ
σ

)j
− · · · − ck(θ)Eθ

(
x− µ
σ

)j+k
= Eθ

(
J1

(
x− µ
σ

)j)
− c0(θ)αj − · · · − ck(θ)αj+k = 0.

(3.62)

Using integration by parts gives

Eθ

(
J1(x;θ)

(
x− µ
σ

)j)

= −
∫

1

σ
J

(
x− µ
σ

)(
x− µ
σ

)j
1

σ
f

(
x− µ
σ

)
ν(dx)

= − 1

σ

∫
xjf ′(x)ν(dx) =

j

σ

∫
xj−1f(x)ν(dx)

=
j

σ
αj−1.

(3.63)
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We then have the following system of equations

0 = 0− c0(θ)− c1(θ)α1 − · · · − ck(θ)αk+1

0 =
1

σ
− c0(θ)α1 − c1(θ)α2 − · · · − ck(θ)αk+2

· · · · · ·

0 =
kαk−1

σ
− c0(θ)αk − c1(θ)αk+1 − · · · − ck(θ)α2k

(3.64)

which has solution

c(θ) =



c0(θ)

c1(θ)

· · ·

ck(θ)


=



1 α1 α2 · · · αk

α1 α2 α3 · · · αk+1

· · · · · · · · · · · · · · ·

αk αk+1 αk+2 · · · α2k



−1



0

1/σ

2α1/σ

· · ·

kαk−1/σ


(3.65)

so that the coefficients depend on the parameter only through the factor 1/σ.

Similarly, since

Eθ

(
J2(x;θ)

(
x− µ
σ

)j)

= −
∫

1

σ

(
1 +

(
x− µ
σ

)
J

(
x− µ
σ

))(
x− µ
σ

)j
1

σ
f

(
x− µ
σ

)
ν(dx)

= − 1

σ

∫ (
1 + x

f ′(x)

f(x)

)
xjf(x)ν(dx) = −αj

σ
− 1

σ

∫
xj+1f ′(x)ν(dx)

= −αj
σ

+
j + 1

σ

∫
xjf(x)µ(dx) = −αj

σ
+

(j + 1)αj
σ

=
jαj
σ

(3.66)

and

Eθ

((
J2 − J (k)

2

)(x− µ
σ

)j)
=
jαj
σ
− b0(θ)αj − · · · − bk(θ)αj+k = 0 (3.67)
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for j = 1, . . . , k, the coefficients b0(θ), . . . , bk(θ) also depend on the parameter only

through a factor 1/σ. Therefore, the information on θ contained in H is given by

I(θ;H) =
1

σ2

I
(k)
11 I

(k)
12

I
(k)
21 I

(k)
22

 (3.68)

where I
(k)
ij are constants independent of θ.

The efficient polynomial score function can be written as

Ĵ
(k)
1 = J

(k)
1 −

I
(k)
12

I
(k)
22

J
(k)
2 = − 1

σ

{
c0 + c1

(
x− µ
σ

)
+ · · ·+ ck

(
x− µ
σ

)k}
. (3.69)

Using the iterative procedure on Ĵ
(k)
1 discussed in Section 3.2.1 we can obtain the

modified polynomial Pitman estimator,

µ̃(k)
n = X − S

Î
(k)
1

1

n

n∑
i=1

k∑
j=0

cj

(
Xi −X

S

)j
(3.70)

where Î
(k)
1 = Î

(k)
11 − Î

(k)
12

(
Î

(k)
22

)−1

Î
(k)
21 .

Theorem 3.2.2. Assume that for some k ≥ 3,
∫
x2kf(x)ν(dx) <∞. The modified

polynomial Pitman estimator

µ̃(k)
n = X − S

Î(k)

1

n

n∑
i=1

k∑
j=0

cj

(
Xi −X

S

)j
(3.71)

is an efficient estimator of µ. That is

√
n
(
µ̃(k)
n − θ

) d−→ N

(
0,

σ2

Î
(k)
1

)
(3.72)

as n −→∞.

Proof. Since the function J(H;θ) = (J1(H;θ), J2(H;θ))′ =
(
J

(k)
1 , J

(k)
2

)′
is a Fisher
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estimating function, so too is Ĵ
(k)
1 and,

−Eθ
(
∂

∂µ
Ĵ

(k)
1

)
= Eθ

(
− c1

σ2
− 2

c2

σ2

(
x− µ
σ

)
− · · · − k ck

σ2

(
x− µ
σ2

)k−1
)

= Eθ

(
Ĵ

(k)
1

)2

=
1

σ2

I(k)
11 −

(
I

(k)
12

)2

I
(k)
22

 =
Î

(k)
1

σ2

(3.73)

while

−Eθ
(
∂

∂σ
Ĵ

(k)
1

)
= Eθ

(
− c0

σ2
− 2

c1

σ2

(
Xi − µ
σ

)
− · · · − (k + 1)

ck
σ2

(
Xi − µ
σ

)k)

= −Eθ
(
∂

∂σ
J

(k)
1 − I

(k)
12

(
I

(k)
22

)−1 ∂

∂σ
J

(k)
2

)
=

1

σ2

(
I

(k)
11 − I

(k)
12

(
I

(k)
22

)−1

I
(k)
22

)
= 0.

(3.74)

We have

√
n
(
µ̂(k) − µ

)
=
√
n
(
X − µ

)
− S

Î
(k)
1

√
n

n

n∑
i=1

k∑
j=0

cj

(
Xi −X

S

)j

=
√
n
(
X − µ

)
− S

Î
(k)
1

√
n

n

n∑
i=1

k∑
j=0

cj

(σ
S

)j (Xi − µ
σ

+
µ−X
σ

)j

=
√
n
(
X − µ

)
− S

Î
(k)
1

√
n

n

n∑
i=1

k∑
j=0

j∑
l=0

cj

(σ
S

)j (j
l

)(
Xi − µ
σ

)j−l(
µ−X
σ

)l
(3.75)
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In the above summand, the terms corresponding to l = 0 are

√
n

n

n∑
i=1

k∑
j=0

cj

(σ
S

)j (Xi − µ
σ

)j

=

√
n

n

n∑
i=1

k∑
j=1

cj
Sj
(
σj − Sj

)(Xi − µ
σ

)j
+

√
n

n

n∑
i=1

k∑
j=0

cj

(
Xi − µ
σ

)j

= −
√
n (S − σ)

1

n

n∑
i=1

k∑
j=1

cj
Sj

(
j∑
l=0

Sj−lσl

)(
Xi − µ
σ

)j
− σ√

n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ)

= −
√
n (S − σ)

1

n

n∑
i=1

k∑
j=0

{
(j + 1)

cj
σ

(
Xi − µ
σ

)j
− cj
σ

(
Xi − µ
σ

)j }

− σ√
n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ) + op(1)

= −
√
n (S − σ)

σ

n

n∑
i=1

{
∂

∂σ
Ĵ

(k)
1 (Xi;µ, σ)− Ĵ (k)

1 (Xi;µ, σ)

}

− σ√
n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ) + op(1)

= − σ√
n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ) + op(1).

(3.76)

The terms corresponding to l = 1 are

√
n

n

n∑
i=1

k∑
j=1

jcj

(σ
S

)j (Xi − µ
σ

)j−1(
µ−X
σ

)

= −
√
n
(
X − µ

) 1

n

n∑
i=1

k∑
j=1

j
cj
σ

(σ
S

)j (Xi − µ
σ

)j−1

= −
√
n
(
X − µ

) 1

n

n∑
i=1

k∑
j=1

j
cj
σ

(
Xi − µ
σ

)j−1

+ op(1)

= −
√
n
(
X − µ

) σ
n

n∑
i=1

∂

∂µ
Ĵ

(k)
1 (Xi;µ, σ) + op(1)

=
Î

(k)
1

σ

√
n
(
X − µ

)
+ op(1)

(3.77)

47



The remaining terms involve
√
n
(
X − µ

)l
, l ≥ 2 so are op(1). Therefore

√
n
(
µ̂(k)
n − µ

)
=
√
n
(
X − µ

)
−
√
n
(
X − µ

) S

Î
(k)
1

Î
(k)
1

σ
+
Sσ

Î
(k)
1

1√
n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ)

− S

Î
(k)
1

√
n

n

n∑
i=1

k∑
j=2

j∑
l=2

cj

(σ
S

)j (j
l

)(
Xi − µ
σ

)j−l(
µ−X
σ

)j
+ op(1)

=
σ2

Î
(k)
1

1√
n

n∑
i=1

Ĵ
(k)
1 (Xi;µ, σ) + op(1)

d−→ N

(
0,

σ2

Î
(k)
1

)

(3.78)

as n −→∞.

It is of interest to consider when a polynomial estimator of the form X+SQ(Z)

is linear. That is, when the polynomial estimator is equal to X. This question was

answered by Kagan, et al. in the same paper. They found that if the distribu-

tion function F (x) has more than k growth points, all its moments α1, α2, . . . are

finite, and α1 = 0, then the sample mean X is optimal as an estimator of µ in the

presence of σ in the class X + SQ(Z) if and only if either α2, . . . , αk+1 coincide

with the corresponding moments of the normal distribution or α2, . . . , αk+1 coin-

cide with the corresponding moments of some centralized gamma distribution, or

α2,−α3, . . . , (−1)k+1αk+1 coincide with the corresponding moments of some central-

ized gamma distribution, where a centralized gamma distribution is a distribution

with characteristic function

e−iγpt

(1− iγt)p
, γ > 0, p > 0. (3.79)
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Chapter 4

Estimators by estimating equations in misspecified models

4.1 Misspecified models and quasi-maximum likelihood

In this introductory section we explain what is meant by a misspecified model

and describe the behavior of the maximum likelihood estimator and estimators gen-

erated as solutions to estimating equations under model misspecification. The re-

sults summarized below are due mainly to Huber ([15]) and White ([41]).

Let X1, . . . ,Xn be independent random vectors having a common distribution

function G which is absolutely continuous with respect to some sigma-finite measure

µ, with dG/dµ = g. The distribution G is unknown, a priori, so a parametric family

of distributions F = {F (x;θ) : θ ∈ Θ ⊆ Rs} is chosen. Θ is assumed to be a

compact subset of Rs and the densities f(x;θ) = dF (x;θ)/dµ(x) are assumed to

exist. We emphasize that the true distribution G may or may not belong to the

working family of distributions F . If G is not an element of F , the model is said to

be misspecified.

The quasi-log-likelihood of the sample is defined as

Ln(θ) = Ln(X1, . . . ,Xn,θ) =
1

n

n∑
i=1

log f(Xi;θ). (4.1)

It can be shown that under general regularity conditions there exists a measurable

function θ̂n = θ̂n(X1, . . . ,Xn) which maximizes the quasi-log-likelihood. That is,
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there exists a statistic θ̂n such that

Ln(θ̂n) ≥ Ln(θ) (4.2)

for any θ ∈ Θ. We call θ̂n the quasi-maximum likelihood estimator (QMLE) of θ

based on the sample X1, . . . ,Xn.

If the model is correctly specified so that G(x) = F (x;θ0) ∈ F for some

θ0 ∈ Θ, the QMLE is simply the MLE and θ̂n is consistent for θ0 and asymptotically

normal. However, if G /∈ F , it is not obvious that the QMLE should converge at all.

It was shown by White that if there is a distribution F (x;θ∗) ∈ F that is ‘closest’

to G(x), then the QMLE will be consistent for θ∗ and will also be asymptotically

normal.

The Kullback-Leibler Information Criterion (KLIC) is defined as

I(g : f,θ) = Eg

(
log

[
g(x)

f(x;θ)

])
=

∫
X

log

[
g(x)

f(x;θ)

]
g(x)µ(dx). (4.3)

A basic result concerning the KLIC is stated in the following Lemma.

Lemma 4.1.1. (Kullback-Leibler) Let f and g be probability densities with re-

spect to a sigma-finite measure µ and let S be the region in which f > 0. If∫
S

(f(x)− g(x))µ(dx) ≥ 0 then

∫
S

log

(
f(x)

g(x)

)
f(x)µ(dx) ≥ 0 (4.4)

with equality if and only if f(x) = g(x) a.e.[µ].

Proof. See [30], p. 59.
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The KLIC does not define a metric on the space of density functions as it

is not symmetric in its arguments and it does not satisfy the triangle inequality.

However it does give us a tool for measuring the ‘closeness’ of the density f(x;θ) to

the density g(x).

Theorem 4.1.2. Suppose Eg (log g(x)) exists and | log f(x;θ) |≤ h(x) for all θ ∈ Θ

where h is integrable with respect to G. If I(g : f,θ) has a unique minimum at

θ∗ ∈ Θ,

θ̂n −→ θ∗ a.s. [G] (4.5)

as n −→∞.

Proof. See [41], p. 4.

Hence the QMLE is a consistent estimator of the parameter which minimizes the

KLIC.

Under certain additional general regularity conditions, the QMLE is also asymp-

totically normal. Let

A(θ) =


Eg

(
∂2 log f(x;θ)
∂θ′1∂θ1

)
· · · Eg

(
∂2 log f(x;θ)
∂θ′1∂θs

)
· · · · · · · · ·

Eg

(
∂2 log f(x;θ)
∂θ′s∂θ1

)
· · · Eg

(
∂2 log f(x;θ)

∂θ′sθs

)

 (4.6)

be the matrix of second order partial derivatives and

B(θ) =


Eg

(
∂ log f(x;θ)

∂θ1

∂ log f(x;θ)
∂θ1

′)
· · · Eg

(
∂ log f(x;θ)

∂θ1

∂ log f(x;θ)
∂θs

′)
· · · · · · · · ·

Eg

(
∂ log f(x;θ)

∂θs

∂ log f(x;θ)
∂θs

′)
· · · Eg

(
∂ log f(x;θ)

∂θs

∂ log f(x;θ)
∂θs

′)

 (4.7)

be the covariance matrix of the gradient of log f(x;θ).
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Theorem 4.1.3.

√
n
(
θ̂n − θ∗

)
d,G−→ Ns

(
0,A−1(θ∗)B(θ∗)A−1(θ∗)

)
(4.8)

Proof. See [41], p. 6.

If the model is correctly specified, so that g(x) ≡ f(x;θ0) for some θ0 ∈ Θ,

then B(θ0) − A(θ0) = 0. However, under misspecification, this is not necessarily

the case, and the covariance matrix in Theorem (4.1.3) does not necessarily collapse.

Similar results hold if our estimator θ̂n is the solution of an estimating equation

n∑
i=1

Ψ(Xi;θ) = 0. (4.9)

In this case, θ̂n will also be consistent and asymptotically normal. However, there

does not seem to be an analogous version of the KLIC for relating the distance be-

tween the true distribution and the working distribution in this setup. The following

Theorem is due to Huber ([15]).

Theorem 4.1.4. Let X1, . . . ,Xn be i.i.d. random vectors with distribution function

G and let θ̂n be a solution of the estimating equation

n∑
i=1

Ψ(Xi;θ) = 0. (4.10)

If

1. Ψ(x;θ) is continuous in θ for each fixed x,

2. λ(θ) = EG (Ψ(x;θ)) exists for all θ ∈ Θ and has a unique zero at θ∗ ∈ Θ,

and
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3. there exists a continuous function which is bounded away from zero, b(θ) ≥

b > 0, such that

(a) sup
θ
‖Ψ‖/b(θ) is integrable

(b) lim inf
‖θ‖−→∞

‖λ(θ)‖/b(θ) ≥ 1

(c) EG

(
lim sup
‖θ‖−→∞

‖Ψ(x;θ)− λ(θ)‖/b(θ)

)
< 1,

then

θ̂n −→ θ∗ (4.11)

in G−probability as n −→∞.

Under further regularity conditions, the estimator θ̂n can be shown to be

asymptotically normal:

√
n
(
θ̂n − θ∗

)
d,G−→ Ns

(
0,Λ−1(θ∗)BΨ(θ∗) (Λ′(θ∗))

−1
)
, (4.12)

where Λ(θ∗) = ∂/∂θλ(θ) |θ=θ∗ .

4.2 Behavior of estimators under model misspecification when the

misspecification is small

In this section we consider the behavior of an estimator generated as the

solution of an estimating equation under model misspecification when the degree of

misspecification is small and can be smoothly parameterized. Suppose X1, . . . ,Xn

is a random sample with probability density function p̃(x; ξn), where ξ′n = (θ′,η′n)

for θ ∈ Θ ⊆ Rs and ηn ∈ Ξ ⊆ Rm, and ‖ηn‖ −→ 0 as n −→ ∞. However,
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we believe the random sample to have probability density function p(x;θ) where

p(x;θ) = p̃(x;θ,0).

For example, suppose we believe the random variable X to have the form

X = θ + ε, where ε is a mean zero random variable with density f , while the true

form of the random variable is X = θ + ε + ηnY , where Y is a mean zero random

variable, independent of ε, with density g. Then the assumed density is f(x − θ)

while the true density is

h(x; θ, ηn) =

∫
f(x− θ − ηnu)g(u)du. (4.13)

Clearly f(x− θ) = h(x; θ, 0).

A second example is Huber’s contamination model ([16]). In this model, we

assume the distribution is F (x; θ), while the true distribution is

H(x; θ, ηn) = (1− ηn)F (x; θ) + ηnG(x; θ). (4.14)

This model has the interpretation that with high probability (1−ηn) an observation

X will be distributed according to F (x; θ), while with small probability the observa-

tion will be distributed according to G(x; θ). In the contamination model we have

F (x; θ) = H(x; θ, 0).

In what follows, we will assume that the square root of the density p̃(x; ξ) is

differentiable in quadratic mean at the point ξ′ = (θ′,0′). That is, we assume there
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exists a vector
a
l
′
(x) =

( a
l
′
1(x),

a
l
′
2(x)

)
such that

∫ [√
p̃(x; ξ + h)−

√
p̃(x; ξ)− 1

2
h′

a
l(x)

√
p̃(x; ξ)

]2

µ(dx)

=

∫ [√
p̃(x; ξ + h)−

√
p(x;θ)− 1

2
h′

a
l(x)

√
p(x;θ)

]2

µ(dx)

= o(‖h‖2) as h −→ 0.

(4.15)

Typically
a
l is the Fisher score at the point ξ, which in our case is

a
l =

∂ log p̃(x;θ,η)
∂θ

|η=0

∂ log p̃(x;θ,η)
∂η

|η=0

 =

 ∂ log p(x;θ)
∂θ

∂ log p̃(x;θ,η)
∂η

|η=0

 . (4.16)

Differentiability in quadratic mean is usually a weaker condition than pointwise

differentiability. For example, a sufficient condition for differentiability in quadratic

mean of
√
p̃(x; ξ) is that

√
p̃(x; ξ) is continuously differentiable in ξ for every x and

that the Fisher information matrix

Ĩ(ξ) = Ep̃

(
∂

∂ξ
log p̃(x; ξ)

)2

(4.17)

is well defined and continuous in ξ ([39], p. 95).

The assumption of differentiability in quadratic mean of the square root of the

density allows us to take an expansion of the log likelihood.

Theorem 4.2.1. Suppose that Θ×Ξ is an open subset of Rs+m and that
√
p̃(x; ξn)

is differentiable in quadratic mean at ξ′ = (θ′,0′). If hn = c/
√
n for some fixed

c′ = (c′1, c
′
2) ∈ Rs+m, then

log
n∏
i=1

p̃(x; ξ + hn)

p̃(x; ξ)
= log

n∏
i=1

p̃(x; ξ + hn)

p(x;θ)

=
1√
n

n∑
i=1

c′
a
l(Xi)−

1

2
c′Ĩ(ξ)c + op(1)

(4.18)
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as n −→∞. If ‖hn‖ = o(1/
√
n),

log
n∏
i=1

p̃(x; ξ + hn)

p̃(x; ξ)
= log

n∏
i=1

p̃(x; ξ + hn)

p(x;θ)
= op(1) (4.19)

as n −→∞.

Proof. See [39], p. 94.

When the model is correctly specified, so that X1, . . . ,Xn is a random sample

with density function p(x;θ), we can choose an estimating function Ψ(X;θ) from

which we can obtain a statistic θ̂n = θ̂n(X1, . . . ,Xn) as a solution to the estimating

equation
n∑
i=1

Ψ(Xi;θ) = 0, (4.20)

and easily find the asymptotic properties of θ̂n as in Chapter 2. We now describe

the behavior of the estimator θ̂n, constructed as if the true family is P = {p(x;θ) :

θ ∈ Θ}, using the estimating function Ψ for P , when the true density is p̃(x; ξn) =

p̃(x;θ,ηn) and p(x;θ) = p̃(x;θ,0). Roughly speaking, if we know the behavior of

a statistic Tn under the probability measure Pn and we know that the probability

measure Qn is sufficiently close to Pn, then we should be able to derive the behavior

of Tn under Qn.

This notion of ‘closeness’ is made precise when we introduce the concept of con-

tiguity. If Pn and Qn are sequences of probability measures defined on the measur-

able spaces (Ωn,Fn), the measures Qn are said to be contiguous with respect to the

measures Pn, written Qn �Pn, if for any sequence An ∈ Fn such that Pn(An) −→ 0

as n −→ 0 then Qn(An) −→ 0 as well. The measures Pn and Qn are said to be
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mutually contiguous, written Pn � � Qn, if both Pn �Qn and Qn � Pn. Contiguity

can be thought of as asymptotic absolute continuity of probability measures.

Theorem 4.2.2. (LeCam’s Third Lemma): Let Pn and Qn be sequences of proba-

bility measures on measurable spaces (Ωn,An), and let Tn : Ωn 7→ Rk be a sequence

of random vectors. If Tn

log dQn
dPn

 d,Pn−→ Nk+1


 µ

−1
2
σ2

 ,

Σ τ

τ ′ σ2


 (4.21)

then

Tn
d,Qn−→ Nk (µ+ τ ,Σ) . (4.22)

Proof. See [39], p. 90.

We mention that when the conditions of Theorem (4.2.2) hold,

log
dQn

dPn

d,Pn−→ N

(
−1

2
σ2, σ2

)
. (4.23)

This is a sufficient condition for the probability measures Pn and Qn to be mutually

contiguous ([39], p. 89). The mutual contiguity of Pn and Qn is an important part

of the proof of LeCam’s Third Lemma in deriving the asymptotic behavior of Tn

under Qn.

Let Ψ = Ψ(X;θ) be an estimating function for P = {p(x;θ)}, and assume

ĨΨ(θ) =

[
Ĩ1
Ψ(θ) Ĩ2

Ψ(θ)

]
=

[
Ep

(
Ψ

a
l
′
1

)
Ep

(
Ψ

a
l
′
2

)]
= Ep

(
Ψ

a
l
′)
. (4.24)

exists and is finite.
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Theorem 4.2.3. Let X1, . . . ,Xn be i.i.d. random variables distributed according to

the density p̃(x; ξn) for ξ′n = (θ′,η′n), where p̃(x;θ,0) = p(x;θ). Suppose
√
p̃(x; ξ)

is differentiable in quadratic mean at ξ′ = (θ′,0′). If θ̂n = θ̂n(X1, . . . ,Xn) is a

solution to the estimating equation

n∑
i=1

Ψ(Xi;θ) = 0 (4.25)

such that

√
n
(
θ̂n − θ

)
=

1√
n

C−1
Ψ (θ)

n∑
i=1

Ψ(Xi;θ) + op(1) (4.26)

then

1.
√
n
(
θ̂n − θ

)
d,p̃−→ Ns

(
0, I−1

Ψ (θ)
)

if ‖ηn‖ = o
(

1√
n

)
2.
√
n
(
θ̂n − θ

)
d,p̃−→ Ns

(
C−1

Ψ (θ)Ĩ2
Ψ(θ)c, I−1

Ψ (θ)
)

if ηn = 1√
n
c

for some fixed c ∈ Rm.

Proof. If ‖ηn‖ = o(1/
√
n) we can use Theorem (4.2.1) to expand the likelihood ratio

to get

log
n∏
i=1

p̃(Xi;θ,ηn)

p̃(Xi;θ,0)
=

n∑
i=1

log
p̃(Xi;θ,ηn)

p(Xi;θ)
= op(1). (4.27)

Then we have
√
n(θ̂n − θ)

log
∏n

i=1
p̃(Xi;θ,ηn)
p(Xi;θ)

 =
1√
n

n∑
i=1

C−1
Ψ (θ)Ψ(Xi;θ)

0

+ op(1)

d,p−→ Ns+1


0

0

 ,

I−1
Ψ (θ) 0

0 0




(4.28)

by the multivariate central limit theorem. By LeCam’s Third Lemma,

√
n
(
θ̂n − θ

)
d,p̃−→ Ns

(
0, I−1

Ψ (θ)
)
. (4.29)
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If ηn = c/
√
n for some fixed c ∈ Rm, we can again use the expansion given in

Theorem (4.2.1), with c̃′ = (0′, c′) ∈ Rs+m to get

log
n∏
i=1

p̃(Xi; ξ + c̃/
√
n)

p̃(Xi; ξ)
=

n∑
i=1

log
p̃(Xi;θ; c/

√
n)

p(Xi;θ)

=
1√
n

n∑
i=1

c′
a
l2(Xi)−

1

2
c′Ĩ22(ξ)c + op(1).

(4.30)

Then we have
√
n
(
θ̂n − θ

)
log
∏n

i=1
p̃(Xi;θ,c/

√
n)

p(Xi;θ)

 =
1√
n

n∑
i=1

C−1
Ψ (θ)Ψ(Xi;θ)

c′
a
l2(Xi)

+

 0

−1
2
c′Ĩ22(ξ)c

+ op(1)

d,p−→ Ns+1


 0

−1
2
c′Ĩ22(ξ)c

 ,

 I−1
Ψ (θ) C−1

Ψ (θ)Ĩ2
Ψ(θ)c

c′Ĩ2′
Ψ(θ)C−1

Ψ (θ) c′Ĩ22(ξ)c


 .

(4.31)

By LeCam’s Third Lemma,

√
n
(
θ̂n − θ

)
d,p̃−→ N

(
C−1

Ψ (θ)Ĩ2
Ψ(θ)c, I−1

Ψ (θ)
)
. (4.32)

As an example, consider Huber’s contamination model with p(x; θ) = f(x−θ)

and

p̃(x; θ, ηn) = (1− ηn)f(x− θ) + ηng(x− θ) (4.33)

for θ ∈ R. Let

tn = X − E0

(
X | X1 −X, . . . , Xn −X

)
(4.34)

be the Pitman estimator of θ,

t̃n = X − 1

nI(f)

n∑
i=1

J(Xi −X) (4.35)
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be the modified Pitman estimator discussed in Section 3.2.1, and θ̂n be the MLE,

all constructed as if the sample X1, . . . , Xn is from the density f(x − θ). Suppose

the MLE θ̂n can be written in the form

√
n
(
θ̂n − θ

)
=

1

I(f)
√
n

n∑
i=1

J(Xi − θ) + op(1). (4.36)

It was shown by Janssen, et al. (see [18]) that under mild regularity conditions,

θ̂n − tn = Op

(
1

n

)
(4.37)

and

t̃n − tn = Op

(
1

n

)
. (4.38)

Then both
√
n (tn − θ) and

√
n
(
t̃n − θ

)
have the representation

1

I(f)
√
n

n∑
i=1

J(Xi − θ) + op(1). (4.39)

The score function can be written as

∂

∂η
log p̃(x; θ, ηn) =

g(x− θ)− f(x− θ)
f(x− θ) + ηn (g(x− θ)− f(x− θ))

(4.40)

so that a
l2(x) =

g(x− θ)− f(x− θ)
f(x− θ)

(4.41)

and

Ĩ2
J(θ) =

∫
J(x− θ)

a
l2(x)f(x− θ)dx =

∫
f ′(x)

f(x)
g(x)dx. (4.42)

Using Theorem (4.2.3), we have that if ηn = o(1/
√
n), both

√
n (tn − θ) and

√
n
(
t̃n − θ

)
converge in distribution to N(0, I−1(f)) as n −→ ∞ under p̃(x; θ, ηn).
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If ηn = c/
√
n for some constant c, then both

√
n (tn − θ) and

√
n
(
t̃n − θ

)
converge

in distribution to

N

(
c
∫ f ′(x)

f(x)
g(x)dx

I(f)
,

1

I(f)

)
(4.43)

as n −→∞ under p̃(x; θ, ηn).

4.3 Finite unions of parametric families

4.3.1 A version of the Cramér-Rao inequality

Suppose X = (X1, . . . , Xn) is a random sample with probability density func-

tion f(x; θ) where θ ∈ R. The classic Cramér-Rao inequality states that if T = T (X)

is an unbiased estimator of θ, then

Varθ(T ) ≥ 1

I(θ)
(4.44)

where I(θ) is the Fisher information contained in the random sample X.

In [3], Andrews, et al. considered the dual-criterion problem for estimation

of a location parameter. The statistic T = T (X1, . . . , Xn) is assumed to be an

unbiased, equivariant estimator of the univariate parameter θ when the random

sample X1, . . . , Xn is distributed according to either of the two families dFθ(x) =

dF (x − θ) = f(x − θ) or dGθ(x) = dG(x − θ) = g(x − θ). They sought to find

a Cramér-Rao lower bound for the variance of such an estimator when the true

distribution is

Hφ(x− θ) = cos2(φ)F (x− θ) + sin2(φ)G(x− θ) (4.45)
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for some fixed φ between 0 and π/2, which includes the case where the random sam-

ple is distributed according to F and the case when the random sample is distributed

according to G. The found that the asymptotic lower bound for the variance of an

equivariant, unbiased estimator T is

sin2(φ)

I(F )
+

cos2(φ)

I(G)
(4.46)

and they constructed an equivariant, unbiased estimator T ∗ for which

VarHφ (T ∗) ∼ sin2(φ)

I(F )
+

cos2(φ)

I(G)
(4.47)

as n −→∞.

We consider a similar problem for a general univariate parameter θ. Let P1 =

{P 1
θ : θ ∈ Θ} and P2 = {P 2

θ : θ ∈ Θ} where Θ is an open subset of R. Let

P = P1∪P2. We assume there exists a sigma-finite measure µ such that Pθ � µ for

all Pθ ∈ P so that the densities f1(x; θ) and f2(x; θ) exist. Suppose X = (X1, . . . , Xn)

is a random sample with each component independently distributed according to

Pθ ∈ P . Our goal is to find a lower bound for an estimator θ̂n = θ̂n(X1, . . . , Xn)

which is a unbiased for θ for any Pθ ∈ P . That is, an estimator θ̂n for which∫
· · ·
∫

(θ̂n − θ)f1(x; θ) · · · f1(xn; θ)µ(dx1) · · ·µ(dxn)

=

∫
· · ·
∫

(θ̂n − θ)f2(x1; θ) · · · f2(xn; θ)µ(dx1) · · ·µ(dxn)

= 0.

(4.48)

Let E1 and Var1 denote expectation and variance with respect to f1(x; θ) and

E2 and Var2 denote expectation and variance with respect to f2(x; θ). We need the

following assumptions on f1 and f2:
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1. the support of f1(x; θ) is the same as the support of f2(x; θ),

2. for each fixed x, f1(x; θ) and f2(x; θ) are differentiable with respect to θ,

3. J1(x) = f ′1(x; θ)/f1(x; θ) ∈ L1(P 2
θ ) and J2(x) = f ′2(x; θ)/f2(x; θ) ∈ L1(P 1

θ ).

4. 0 < I1(θ) = E1 (J2
1 (x)) <∞ and 0 < I2(θ) = E2 (J2

2 (x)) <∞,

5. f2(x; θ)/f1(x; θ) ∈ L2(P 1
θ ) and f1(x; θ)/f2(x; θ) ∈ L2(P 2

θ ),

6. ∂/∂θ
∫
f1(x; θ)µ(dx) =

∫
∂/∂θf1(x; θ)µ(dx) and

∂/∂θ
∫
f2(x; θ)µ(dx) =

∫
∂/∂θf2(x; θ)µ(dx).

Theorem 4.3.1. Under the above assumptions,

Var1(θ̂n) ≥ 1

nI1(θ)− n2(E2J1(x))2

(1+∆1)n

(4.49)

and

Var2(θ̂n) ≥ 1

nI2(θ)− n2(E1J2(x))2

(1+∆2)n

(4.50)

for some non-negative constants ∆1 and ∆2.

Proof. Differentiating

E1(θ̂n) = θ =

∫
· · ·
∫
θ̂n

n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn) (4.51)

with respect to θ gives

1 =

∫
· · ·
∫
θ̂n

n∑
i=1

f ′1(x; θ)
∏
j 6=i

f1(xj; θ)µ(dx1) · · ·µ(dxn)

=
n∑
i=1

∫
· · ·
∫
θ̂nJ1(xi)

n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn)

=

∫
· · ·
∫

(θ̂n − θ)
n∑
i=1

J1(xi)
n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn).

(4.52)
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We also have
∫
· · ·
∫
θ̂n

n∏
i=1

f2(xi; θ)µ(dx1) · · ·µ(dxn) = θ, so for any real c,

c

∫
· · ·
∫

(θ̂n − θ)
n∏
i=1

f2(xi; θ)µ(dx1) · · ·µ(dxn)

=

∫
· · ·
∫

(θ̂n − θ)c
n∏
i=1

f2(xi; θ)

f1(xi; θ)

n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn)

= 0.

(4.53)

Subtracting equation (4.53) from equation (4.52) gives

1 =

∫
· · ·
∫

(θ̂n − θ)

(
n∑
i=1

J1(xi)− c
n∏
i=1

f2(xi; θ)

f1(xi; θ)

)
n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn).

(4.54)

It follows from the Cauchy-Schwarz inequality that

Var1(θ̂n) ≥ 1

E1

(∑n
i=1 J1(xi)− c

∏n
i=1

f2(xi;θ)
f1(xi;θ)

)2 . (4.55)

We can rewrite the term E1

(
n∏
i=1

f2(xi; θ)/f1(xi; θ)

)
:

E1

(
n∏
i=1

f2(xi; θ)

f1(xi; θ)

)2

=

∫
· · ·
∫ ( n∏

i=1

f2(xi; θ)

f1(xi; θ)

)2 n∏
i=1

f1(xi; θ)µ(dx1) · · ·µ(dxn)

=

(∫ (
f2(x; θ)

f1(x; θ)

)2

f1(x; θ)µ(dx)

)n

= (1 + ∆1)n

(4.56)

for some ∆1 ≥ 0, since
∫

(f/g)2gµ(dx) ≥ 1 with equality if and only if f = g a.e.[µ].

The denominator of (4.55) then becomes

E1

(
n∑
i=1

J1(xi)− c
n∏
i=1

f2(xi; θ)

f1(xi; θ)

)2

= nI1(θ)− 2cnE2(J1(x)) + c2(1 + ∆1)n.

(4.57)
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Minimizing over c gives

c∗ = n
E2(J1(x))

(1 + ∆1)n
. (4.58)

Let

Ĵ1(X) = J1(X)− Ê1

(
J1(X)

f2

f1

(X)

)
=

n∑
i=1

J1(xi)− n
E2(J1(x))

(1 + ∆1)n

n∏
i=1

f2(xi; θ)

f1(xi; θ)

(4.59)

where Ê is the projection operator, and

Î1(θ) = E1(Ĵ2
1 (x)) = nI1(θ)− n2E2(J1(x))2

(1 + ∆1)n
. (4.60)

The Cramer-Rao lower bound for the variance of an unbiased estimator θ̂n of θ

becomes

Var1(θ̂n) ≥ 1

Î1(θ)
=

1

nI1(θ)− n2E2(J1(x))2

(1+∆1)n

, (4.61)

proving (4.49). The proof of (4.50) is identical.

If f 6≡ g, then ∆1 > 0 and

n2 (E2J1(x))2

(1 + ∆1)n
−→ 0 (4.62)

as n −→ ∞ so that the asymptotic lower bound is 1/nI1(θ). Therefore Theorem

(4.3.1) is consistent with (4.46).

Let us now return to the setup of Section 4.2. Suppose our two families are

P1 = {f1(x; θ) : θ ∈ Θ} and P2,n = {f2(x; θ, αn) : θ ∈ Θ, αn ∈ R} where the

densities f1 and f2 are related by the equation f1(x; θ) = f2(x; θ, 0). Suppose we

can expand the density f2 in a Taylor series expansion about the point α = 0:

f2(x; θ, αn) = f2(x; θ, 0) + αn
∂

∂α
f2(x; θ, 0) + o(αn)

= f1(x; θ) + αn
∂

∂α
f2(x; θ, 0) + o(αn)

(4.63)
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as αn −→ 0. Let θ̂n be an unbiased estimator for θ for any Pθ ∈ P = P1 ∪P2,n. For

this example, the information bound can be computed explicitly.

1 + ∆1 =

∫ (
f2(x; θ, αn)

f1(x; θ)

)2

f1(x; θ)µ(dx)

=

∫
(f1(x; θ) + αn∂/∂αf2(x; θ, 0) + o(αn))2

f1(x; θ)
µ(dx)

=

∫
f1(x; θ)µ(dx) + 2αn

∫
∂/∂αf2(x; θ, 0)µ(dx)

+ (αn)2

∫
(∂/∂αf2(x; θ, 0))2

f1(x; θ)
µ(dx) + o(α2

n)

= 1 + cα2
n + o(α2

n),

(4.64)

under the assumption that
∫
∂/∂αf2(x; θ, 0)µ(dx) = ∂/∂α

∫
f2(x; θ, 0)µ(dx) = 0.

Also,

E2J1(x) =

∫
∂/∂θf1(x; θ)

f1(x; θ)
f2(x; θ, αn)µ(dx)

=

∫ (
∂/∂θf1(x; θ)

f1(x; θ)

)
(f1(x; θ) + αn∂/∂αf2(x; θ, 0) + o(αn))µ(dx)

=

∫
∂/∂θf1(x; θ)µ(dx)

+ αn

∫ (
∂/∂θf1(x; θ)

f1(x; θ)

)
∂/∂αf2(x; θ, 0)µ(dx) + o(αn)

= c1αn + o(αn) as αn −→ 0.

(4.65)

The information inequality of Theorem (4.3.1) becomes

Var1(
√
nθ̂n) ≥ 1

I1(θ)− n(E2J1(x))2

(1+∆1)n

=
1

I1(θ)− n(c21α
2
n+o(α2

n))

(1+cα2
n+o(α2

n))n

(4.66)

We can use Theorem (4.3.1) to compare the information bound when the two

families P1 and P2,n become closer as n increases by observing what happens as
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αn −→ 0 at different rates. If αn = o(1/
√
n) as n −→∞,

n(c1α
2
n + o(α2

n))

(1 + α2
nc2 + o(α2

n))n
∼ c1n(α2

n + o(α2
n)) (ec)−α

2
nn

= c1no

(
1

n

)
eo(1/n) = o(1)

(4.67)

as n −→∞, so that asymptotically, there is no loss of information. If αn = 1/
√
n,

n(c1α
2
n + o(α2

n))

(1 + cα2
n + o(α2

n))n
∼ c1n

(
α2
n + o(α2

n)
)

(ec)−α
2
nn

= c1n

(
1

n
+ o

(
1

n

))
e−c = c1e

−c(1 + o(1))

(4.68)

as n −→∞, so that asymptotically, there may be some loss of information. Finally,

if αn = 1/nδ for 0 < δ < 1/2,

n(c1α
2
n + o(α2

n))

(1 + α2
nc+ o(α2

n))n
∼ c1n

(
α2
n + o(α2

n)
)

(ec)−α
2
nn

=
(
c1n

1−2δ + o(n1−2δ)
)

(ec)−n
1−2δ

= o(1)

(4.69)

as n −→∞, so that again, asymptotically, there is no loss of information.

These results can be interpreted as follows: If the two possible distributions

are sufficiently close, then there is no need to distinguish between them, and there

will be no loss of information. If the two distributions are sufficiently far apart, then

asymptotically, we should be able to distinguish between the two possible families

perfectly and there will be no loss of information. However, when αn = 1/
√
n, the

possible distributions are close enough to affect the information bound.

4.3.2 Efficient estimators

Let P1 = {f1(x; θ1) : θ1 ∈ Θ1} and P2 = {f2(x; θ2) : θ2 ∈ Θ2} be two

parametric families with both Θ1 and Θ2 open subsets of R. The Cramér-Rao lower
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bound guarantees that if X1, . . . , Xn is a random sample distributed according to

P1 ∈ P1 that any unbiased estimator Tn = Tn(X1, . . . , Xn) of θ1 will have vari-

ance greater than or equal to 1/nI1(θ), where I1(θ) is the Fisher information on

θ corresponding to f1(x; θ). Asymptotically, the maximum likelihood estimator θ̂1

satisfies

√
n
(
θ̂1 − θ

)
d−→ N

(
0,

1

I1(θ)

)
(4.70)

as n −→ ∞. We say that θ̂1 is an efficient estimator since the limiting distribution

of
√
n
(
θ̂1 − θ

)
is Gaussian with variance equal to the Cramer-Rao lower bound.

Similarly, if X1, . . . , Xn is distributed according to f2(x; θ2) any unbiased estimator

θ̂2 of θ2 will have variance greater than or equal to 1/I2(θ2), and asymptotically, the

MLE of θ2 satisfies

√
n
(
θ̂2 − θ2

)
d−→ N

(
0,

1

I2(θ2)

)
. (4.71)

Now suppose our random sample X1, . . . , Xn comes from P ∈ P = P1 ∪ P2.

Our goal is to construct a statistic which behaves like θ̂1 when P ∈ P1 and like θ̂2

when P ∈ P2.

In what follows, we will need to assume that the functions

1

n

n∑
i=1

log fj(Xi; θj) (4.72)

follow the uniform law of large numbers for j = 1, 2. That is

sup
θ∈Θj

1

n

n∑
i=1

log fj (Xi; θ)− E (log fj (x; θ)) = op(1) as n −→∞. (4.73)

One well-known set of conditions for which the uniform law of large numbers holds

is given in the following Lemma.
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Lemma 4.3.2. If Θ is a compact subset of Rk, mθ(x) is continuous in θ for each

x, and |mθ(x)| ≤ h(x) for all θ ∈ Θ, where E|h(x)| <∞, then

sup
θ∈Θ

1

n

n∑
i=1

mθ(Xi)− Emθ(x)
p−→ 0 as n −→∞. (4.74)

Proof. Fix ε > 0. For each θ ∈ Θ, let Bε(θ) = {θ′ ∈ Θ : ‖θ′ − θ‖ < ε}. By the

continuity of mθ(x) in θ, for εn ↘ 0 as n −→∞,(
sup

θ′∈Bεn (θ)

mθ′(x)− inf
θ′∈Bεn (θ)

mθ′(x)

)
−→ 0 as n −→∞. (4.75)

Since the functionsmθ(x) are assumed bounded by h(x), it follows from the Lebesgue

Dominated Convergence Theorem that

lim
n−→∞

E

(
sup

θ′∈Bεn (θ)

mθ′(x)− inf
θ′∈Bεn (θ)

mθ′(x)

)
= 0. (4.76)

Therefore, for each θ ∈ Θ, there exists δ(θ) > 0 such that

E

(
sup

θ′∈Bδ(θ)(θ)

mθ′(x)− inf
θ′∈Bδ(θ)(θ)

mθ′(x)

)
< ε. (4.77)

The set {Bδ(θ)(θ)}θ∈Θ forms an open cover of Θ, so by the compactness of Θ there

exists a finite subcover, say {B1, . . . , Bk} of Θ. If θ ∈ Bj,

1

n

n∑
i=1

inf
θ′∈Bj

mθ′(Xi)− Emθ(x) ≤ 1

n

n∑
i=1

mθ(Xi)− Emθ(x)

≤ 1

n

n∑
i=1

sup
θ′∈Bj

mθ′(Xi)− Emθ(x).

(4.78)

By the law of large numbers,

1

n

n∑
i=1

sup
θ′∈Bj

mθ′(Xi)− Emθ(x)
p−→ E

(
sup
θ′∈Bj

mθ′(x)−mθ(x)

)
< ε (4.79)

and

−

(
Emθ(x)− 1

n

n∑
i=1

inf
θ′∈Bj

mθ′(Xi)

)
p−→ −E

(
mθ(x)− inf

θ′∈Bj
mθ′(x)

)
> −ε.

(4.80)
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Therefore,

0 ≤ lim sup
n−→∞

(
sup
θ∈Bj

1

n

n∑
i=1

mθ(Xi)− Emθ(x)

)
< ε (4.81)

in probability for all ε > 0, or(
sup
θ∈Bj

1

n

n∑
i=1

mθ(Xi)− Emθ(x)

)
= op(1). (4.82)

Finally,

sup
θ∈Θ

1

n

n∑
i=1

mθ(Xi)− Emθ(x) = max
1≤j≤k

(
sup
θ∈Bj

1

n

n∑
i=1

mθ(Xi)− Emθ(x)

)

= op(1).

(4.83)

Theorem 4.3.3. Let P1 = {f1(x; θ1) : θ1 ∈ Θ1 ⊆ R} and P2 = {f2(x; θ2) : θ2 ∈

Θ2 ⊆ R} be two parametric families and let X = (X1, . . . , Xn) be a random sample

from P ∈ P = P1 ∪ P2. Suppose the true value of the parameter, θ0, is an interior

point of Θ1, and there exists a point θ∗ which is an interior point of Θ2 and uniquely

minimizes the KLIC,
∫

log (f1(x; θ0)/f2(x; θ∗)) f1(x; θ0)µ(dx) > 0. Let E1 denote

expectation with respect to the density f1(x; θ0). If

sup
θ∈Θj

1

n

n∑
i=1

log fj (Xj; θ)− E1 (log fj(x; θ)) = op1(1) as n −→∞, (4.84)

for j = 1, 2, then

P1

(
sup
θ∈Θ

n∏
i=1

f1(Xi; θ) > sup
θ∈Θ

n∏
i=1

f2(Xi; θ)

)
−→ 1 as n −→∞. (4.85)

Proof. Let θ̂1 be the MLE for θ1 based on the random sample X when the true

density is f1(x; θ0), so that
n∏
i=1

f1(Xi; θ̂1) ≥
n∏
i=1

f1(Xi; θ1) for any θ1 ∈ Θ1. Let θ̂2 be
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the QMLE for θ2 based on the random sample X and the density f2(x; θ2) so that

n∏
i=1

f2(Xi; θ̂2) ≥
n∏
i=1

f2(Xi; θ2) for any θ2 ∈ Θ2. Then

P1

(
sup
θ∈Θ

n∏
i=1

f1(Xi; θ) > sup
θ∈Θ

n∏
i=1

f2(Xi; θ)

)

= P1

(
n∏
i=1

f1(Xi; θ̂1) >
n∏
i=1

f2(Xi; θ̂2)

)

= P1

(
1

n

n∑
i=1

log f1(Xi; θ̂1) >
1

n

n∑
i=1

log f2(Xi; θ̂2)

)
.

(4.86)

By assumption,∣∣∣∣∣ 1n
n∑
i=1

log f1(Xi; θ̂1)− E1

(
log f1(x; θ̂1)

)∣∣∣∣∣
≤ sup

θ∈Θ

1

n

n∑
i=1

log f1(Xi; θ)− E1 (log f1(x; θ)) = op1(1),

(4.87)

and by Lemma (4.1.1),

E1

(
log

f1(x; θ0)

f1(x; θ)

)
= E1 (log f1(x; θ0))− E1 (log f1(x; θ)) > 0 (4.88)

for any θ0 6= θ. Let M(θ) = E1 (log f1(x; θ)) and Mn(θ) = 1/n
n∑
i=1

log f1(x; θ). By

(4.88), M(θ0) ≥ M(θ) for any θ ∈ Θ1, and Mn(θ0)
p−→ M(θ0) as n −→ ∞, hence

Mn(θ̂1) ≥Mn(θ0) = Mn(θ0)−M(θ0) +M(θ0) = M(θ0) + op1(1). Therefore,

op1(1) ≤Mn(θ̂1)−M(θ0) ≤Mn(θ̂1)−M(θ̂1)

≤ sup
θ∈Θ
|Mn(θ)−M(θ)| = op1(1),

(4.89)

so that

1

n

n∑
i=1

log f1(Xi; θ̂1)− E1 (log f1(x; θ0)) = op1(1). (4.90)

By Theorem (4.1.2), the QMLE θ̂2 is a consistent estimator of θ∗, and

log
n∏
i=1

f2(Xi; θ̂2) ≥ log
n∏
i=1

f2(Xi; θ) for any θ ∈ Θ2. Since we have assumed that
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θ∗ uniquely minimizes the KLIC, we have KLIC(f1; f2, θ) > KLIC(f1; f2, θ
∗), or

E1 log f2(x; θ) ≤ E1 log f2(x; θ∗) for any θ ∈ Θ2. We can therefore repeat the above

arguments with f1 replaced by f2 and θ0 replaced by θ∗ to get

1

n

n∑
i=1

log f2(Xi; θ̂2)− E1 (log f2(x; θ∗)) = op1(1). (4.91)

Using equations (4.90), (4.91), we have

1

n

n∑
i=1

logf1(Xi; θ̂1)− 1

n

n∑
i=1

log f2(Xi; θ̂2)

=
1

n

n∑
i=1

log f1(Xi; θ̂1)− E1 (log f1(x; θ0)) + E1 (log f1(x; θ0))

− 1

n

n∑
i=1

log f2(Xi; θ̂2) + E1 (log f2(x; θ∗))− E1 (log f2(x; θ∗))

= E1 (log f1(x; θ0))− E1 (log f2(x; θ∗)) + op1(1)

= E1

(
log

f1(x; θ0)

f2(x; θ∗)

)
+ op1(1)

p1−→ E1

(
log

f1(x; θ0)

f2(x; θ∗)

)
> 0

(4.92)

We can use Theorem (4.3.3) to find a statistic θ̂n that behaves like θ̂1 when

P ∈ P1 and like θ̂2 when P ∈ P2.

Corollary 4.3.4. Let (X1, . . . , Xn) be i.i.d. random variables distributed according

to P ∈ P = P1∪P2. Suppose P ∈ P1, so that dP (x)/dµ = f(x) = f1(x; θ1) for some

θ1 ∈ Θ1, and let θ̂1 be the MLE for θ1 and θ̂2 be the QMLE for θ2. The statistic

θ̂n = θ̂1I

{
n∏
i=1

f1(Xi; θ̂1) >
n∏
i=1

f2(Xi; θ̂2)

}

+ θ̂2I

{
n∏
i=1

f1(Xi; θ̂1) ≤
n∏
i=1

f2(Xi; θ̂2)

} (4.93)

satisfies
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1. θ̂n
p−→ θ1 and

2.
√
n
(
θ̂n − θ1

)
d−→ N

(
0, 1

I1(θ1)

)
as n −→∞.

Proof. Let An =

{
n∏
i=1

f1(Xi; θ̂1) ≤
n∏
i=1

f2(Xi; θ̂2)

}
. Since P1(An) −→ 0 as n −→ ∞,

it follows that I(An) −→ 0 in P1−probability, since for any ε > 0,

P1 (ω :| I(An) |> ε) = P1 (ω : I(An) = 1) = P1 (ω : ω ∈ An)

= P1(An) −→ 0 as n −→∞.
(4.94)

Likewise, I(Acn) −→ 1 in P1−probability as n −→ ∞. Since θ̂1 is a consistent

estimator of θ1 and θ̂2 is a consistent estimator of θ∗, it follows that θ̂n is a consistent

estimator of θ1.

To show asymptotic normality, we can see that

√
n
(
θ̂n − θ1

)
=
√
n
(
θ̂1I(Acn) + θ̂2I(An)− θ1I(Acn)− θ1I(An)

)
=
√
n
(
θ̂1 − θ1

)
I(Acn) +

√
n
(
θ̂2 − θ1

)
I(An)

d−→ N

(
0,

1

I1(θ1)

) (4.95)

as n −→ ∞ since the QMLE θ̂2 is a consistent estimator of θ∗ and
√
nI(An) −→ 0

in P1−probability by a calculation equivalent to (4.94).

Corollary (4.3.4) can be easily extended to the case when P = P1 ∪ · · · ∪ Pk,

a finite union of parametric families Pj = {fj(x; θj) : θj ∈ Θj}. As in Theorem

(4.3.3), under certain regularity conditions,

lim
n−→∞

P1

(
n∏
i=1

f1(Xi; θ̂1) > max
j 6=1

n∏
i=1

fj(Xi; θ̂j)

)
= 1 (4.96)
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and the appropriate modification of (4.93) is

θ̂n = θ̂1I

{
n∏
i=1

f1(Xi; θ̂1) > max
j 6=1

n∏
i=1

fj(Xi; θ̂j)

}
+ · · ·

+ θ̂kI

{
n∏
i=1

fk(Xi; θ̂k) > max
j 6=k

n∏
i=1

fj(Xi; θ̂k)

}
.

(4.97)

In some situations the statistic θ̂n in equation (4.93) trivially converges to

the true parameter θ because the quantity that minimizes the information criterion

is the true parameter itself. For example, if f1(x) is a symmetric density, and

f2(x; θ) = f2(x− θ) where f2(x) is also a symmetric density, then θ∗ = 0 minimizes

the KLIC. The KLIC between f1 and f2 is given by

I(f1 : f2, θ) = Ef1

(
log

[
f1(x)

f2(x− θ)

])
, (4.98)

and can be minimized by maximizing the quantity∫
log (f2(x− θ)) f1(x)µ(dx). (4.99)

Assuming we can interchange the operations of integration and differentiation, the

minimum is attained at the value of θ where

∂

∂θ

∫
log (f2(x− θ))f1(x)µ(dx) =

∫
∂

∂θ
log (f2(x− θ)) f1(x)µ(dx)

= −
∫
f ′1(x− θ)
f1(x− θ)

f2(x)µ(dx) = 0.

(4.100)

Since f1 and f2 are even and f ′1 is odd, the above integral will be equal to 0 when

θ = 0.

As a non-trivial example, suppose X1, . . . , Xn are i.i.d. lognormal random

variables with density function

g(x) =
1√
2π

1

x
exp

{
−(log x)2

2

}
I(0,∞)(x), (4.101)
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and our two families of densities are

P1 =

{
g(x; θ) =

1√
2πθ

1

x
exp

{
−(log x)2

2θ2

}
I(0,∞)(x) θ > 0

}
(4.102)

and

P2 =

{
f(x; θ) =

1

θ
exp

{
−x
θ

}
I(0,∞)(x) θ > 0

}
. (4.103)

The parameter which minimizes I(g; f, θ) is θ∗ =
√
e. The MLE

θ̂g =

(
1

n

n∑
i=1

log(Xi)

)1/2

(4.104)

converges in probability to 1 and the QMLE θ̂f = X converges in probability to

θ∗ =
√
e.

A simulation shows that, in this example, this procedure chooses the MLE

every time even though the QMLE converges rather slowly.
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i Xi θ̂g θ̂f log
n∏
i=1

g(Xi; θ̂g) log
n∏
i=1

f(Xi; θ̂f ) θ̂n

1 0.129 2.048 0.129 -0.088 -2.065 2.048

2 0.256 0.1740 -0.193 -0.534 -3.370 1.740

3 0.133 0.1837 0.173 -0.652 -5.360 1.837

4 2.940 1.680 0.865 -3.400 -3.572 1.680

5 0.265 1.616 0.745 -3.815 -4.247 1.616

· · · · · · · · · · · · · · · · · · · · ·

20 0.417 1.197 1.335 -25.172 -29.850 1.197

· · · · · · · · · · · · · · · · · · · · ·

30 0.541 1.164 1.721 -44.765 -72.528 1.164

· · · · · · · · · · · · · · · · · · · · ·

40 5.799 1.071 1.613 -56.115 -84.971 1.071

· · · · · · · · · · · · · · · · · · · · ·

50 0.690 1.107 1.698 -71.937 -117.611 1.107

· · · · · · · · · · · · · · · · · · · · ·

100 0.251 1.030 1.802 -140.922 -265.736 1.030

· · · · · · · · · · · · · · · · · · · · ·

500 0.755 0.998 1.676 -698.837 -1146.099 0.998
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Chapter 5

Analogues of classical tests based on estimating functions

5.1 Estimation in a submodel

We call P∗ a submodel of P = {Pθ : θ ∈ Θ ⊆ Rs} if there exists an m-

dimensional (m < s) parameter η such that

P∗ = {P ∗η}, P ∗η = Pθ(η), η ∈ H ∈ Rm (5.1)

where θ(η) is a differentiable function of η. Let

D(η) =


∂θ1(η)/∂η1 · · · ∂θ1(η)/∂ηm

· · · · · · · · ·

∂θs(η)/∂η1 · · · ∂θs(η)/∂ηm

 . (5.2)

We assume D is of full rank.

Let Ψ(X;θ) be an estimating function for the full model P . There are many

transformations of Ψ that will produce an estimating function for P∗, but the op-

timal linear transformation involves the Fisher form of the estimating function Ψ.

Theorem 5.1.1. The optimal estimating function for P∗ in the class of linear

transformations C = {A(θ)Ψ(X;θ) : A(θ) is an m× s matrix of full rank } is

Ψ∗(X;η) = D′(η)C′Ψ(θ(η))B−1
Ψ (θ(η))Ψ(X;θ(η)). (5.3)

Proof. We fist verify that Ψ∗ = D′C′ΨB−1
Ψ Ψ is a Fisher estimating function. Clearly
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Ψ∗ has zero expectation and components which are square integrable. Also,

BΨ∗(η) = Eη (Ψ∗(Ψ∗)′) = D′C′ΨB−1
Ψ Eη (ΨΨ′) B−1

Ψ CΨD

= D′C′ΨB−1
Ψ CΨD > 0

(5.4)

while

CΨ∗(η) = −Eη
(
∂

∂η
Ψ∗
)

= −D′C′ΨB−1
Ψ Eη

(
∂

∂η
Ψ(x;θ(η))

)
= −D′C′ΨB−1

Ψ Eη

(
∂

∂θ
Ψ(x;θ)

∂θ(η)

∂η

)
= D′C′ΨB−1

Ψ CΨD = BΨ∗(η) > 0.

(5.5)

Hence

IΨ∗(η) = BΨ∗(η) = CΨ∗(η). (5.6)

Let Ψ̃ = AΨ be any estimating function for P∗ in C. We need to show IΨ∗(η) ≥

IΨ̃(η). Since

IΨ̃(η) = C′
Ψ̃

B−1

Ψ̃
CΨ̃ = D′C′ΨA′(ABΨA′)−1ACΨD, (5.7)

it suffices to show B−1
Ψ ≥ A′(ABΨA′)−1A. Let Σ be the positive definite matrix

such that Σ′Σ = BΨ. For any Y ∈ Rs and β ∈ Rm, the quadratic form

(ΣY −ΣA′β)′(ΣY −ΣA′β) = (Y −Aβ)′BΨ(Y −Aβ) (5.8)

is nonnegative. Using the theory of least squares, the above quadratic form is

minimized when β̂ = (ABΨA′)−1ABΨY. Substituting β̂ into (5.8) and expanding

the expression gives

Y′BΨY ≥ Y′BΨA′(ABΨA′)−1ABΨY. (5.9)
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Since this holds for any Y it follows that

BΨ ≥ BΨA′(ABΨA′)−1ABΨ. (5.10)

Multiplying on the left and right by B−1
Ψ gives the result.

Under the same regularity conditions as mentioned in Chapter 2, the estimat-

ing equation
n∑
i=1

Ψ∗(Xi;η) = 0 (5.11)

will have a solution η̂n = η̂n(X1, . . . ,Xn) that is a consistent estimator for η when

the model can be correctly parameterized by the m−dimensional parameter η and

√
n (η̂n − η)

d−→ Nm

(
0, I−1

Ψ∗ (η)
)

(5.12)

as n −→∞. It follows from the delta method that

√
n (θ (η̂n)− θ (η))

d−→ Ns

(
0,DI−1

Ψ∗ (η) D′
)

(5.13)

as n −→∞. Let θ̂n be the solution to the estimating equation

n∑
i=1

Ψ (Xi;θ) = 0. (5.14)

Then

√
n
(
θ̂n − θ

)
d−→ Ns

(
0, I−1

Ψ (θ)
)

(5.15)

as n −→∞. It follows from the proof of Theorem (5.1.1) that

DI−1
Ψ∗D

′ = D (D′IΨD)
−1

D′ ≤ I−1
Ψ . (5.16)

This expresses the fact that in estimating a parameter by estimating functions, it

is always better to parameterize the model from the very beginning with as few

parameters as possible.
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We now consider the problem of constructing a test statistic for the hypothesis

that θ = θ(η) for some known function θ.

5.2 Wald’s test

Let X1, . . . ,Xn be a random sample from a distribution Pθ in P = {Pθ :

θ ∈ Θ ⊆ Rs}. We are interested in testing the hypothesis that the model is over

parameterized. That is, the true model P∗ = {P ∗η : η ∈ H ⊆ Rm} is a submodel of

P . Suppose there exists a function R : Rs −→ Rk, where k = m−s, which links the

parameters in the full model to those in the submodel, in that for every P ∗η ∈ P∗

where P ∗η = Pθ(η) we have R(θ) = 0.

In 1943, Wald proposed a statistic based on the unrestricted maximum likeli-

hood estimator for testing the hypothesis that R(θ) = 0 for some known function

R : Rs −→ Rk (see [40]). If θ̂n is the solution to the equation

n∑
i=1

∂

∂θ
log f(Xi;θ) = 0 (5.17)

then, under the hypothesis R(θ) = 0, the statistic

nR′(θ̂n)

(
∂R(θ̂n)

∂θ
I−1(θ)

∂R′(θ̂n)

∂θ

)−1

R(θ̂n) (5.18)

converges in distribution to a χ2
k random variable, where k = s −m and I−1(θ) is

the inverse of the Fisher information matrix.

A similar test statistic based on θ̂n, the solution to an arbitrary estimating

equation
n∑
i=1

Ψ(xi;θ) = 0 (5.19)
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can be used in place of the MLE.

Theorem 5.2.1. Suppose IΨ(θ) is a positive definite matrix, the Jacobian

∂R(θ)

∂θ
=


∂R1(θ)
∂θ1

· · · ∂R1(θ)
∂θs

· · · · · · · · ·

∂Rk(θ)
∂θ1

· · · ∂Rk(θ)
∂θs

 (5.20)

exists, is continuous in θ, and is of full rank m, and the matrix[
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R′(θ)

∂θ

]−1

(5.21)

is continuous in θ. Then, under H0 : R(θ) = 0,

1.

√
nR(θ̂n)

d−→ Nk

(
0,
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R′(θ)

∂θ

)
(5.22)

and

2.

Wn = nR′(θ̂n)

[
∂R(θ̂n)

∂θ
I−1
Ψ (θ̂n)

∂R′(θ̂n)

∂θ

]−1

R(θ̂n)
d−→ χ2

k (5.23)

as n −→∞.

Proof. Let Ψ be an estimating function for the full model P and let θ̂n be the

solution to the estimating equation
n∑
i=1

Ψ(Xi;θ) = 0 . We can expand R(θ̂n) in a

Taylor series around the point θ. For some θ∗n between θ̂n and θ we have

√
n(R(θ̂n)−R(θ)) =

√
n

(
R(θ) +

∂R(θ∗n)

∂θ
(θ̂n − θ)−R(θ)

)
=
∂R(θ)

∂θ

√
n(θ̂n − θ) + op(1)

d−→ Nk

(
0,
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R(θ)′

∂θ

) (5.24)
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as n −→∞. Under H0, R(θ) = 0, which proves 1. Part 2 follows from part 1, since(
∂R(θ̂n)

∂θ
I−1
Ψ (θ̂n)

∂R′(θ̂n)

∂θ

)−1

p−→
(
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R′(θ)

∂θ

)−1

(5.25)

as n −→∞. Then, by Slutsky’s theorem,

Wn
d−→ χ2

k. (5.26)

For fixed α ∈ (0, 1), let χ2
α,k denote the critical point of the χ2

k distribution.

The statistic Wn can be used to as an asymptotic level α test statistic with critical

region K = (χ2
α,k,∞) for testing the null hypothesis R(θ) = 0.

Let Θ0 = {θ ∈ Θ : R(θ) = 0} and let θ∗ be any point in
(
Θ0

)c
. The power of

the test is defined to be

Pθ∗ (Wn ∈ K) . (5.27)

The test is said to be consistent if it is asymptotically of level α and

lim
n
Pθ∗ (Wn ∈ K) = 1 (5.28)

for any fixed θ∗ ∈
(
Θ0

)c
.

Theorem 5.2.2. Under the same conditions as Theorem (5.2.1), the sequence of

tests based on Wn is asymptotically consistent at level α against any alternative

θ∗ ∈
(
Θ0

)c
.

Proof. Fix θ∗ ∈
(
Θ0

)c
. Then R(θ∗) is not equal to the zero vector. Since θ̂n is a

consistent estimator for θ∗ and

h(θ) = R′(θ)

(
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R′(θ)

∂θ

)−1

R(θ) (5.29)
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is assumed continuous in θ, given ε > 0 we have for all sufficiently large n,

Pθ∗
(

h(θ̂n)− h(θ∗) ≥ ε
)
< ε. (5.30)

Since (
∂R(θ∗)

∂θ
I−1
Ψ (θ∗)

∂R′(θ∗)

∂θ

)−1

(5.31)

is a positive definite matrix, and R(θ∗) is not the zero vector, the quadratic form

h(θ∗) = R′(θ∗)

(
∂R(θ∗)

∂θ
I−1
Ψ (θ∗)

∂R′(θ∗)

∂θ

)−1

R(θ∗) (5.32)

is a positive number, say c. We have for any ε with 0 < ε < c,

0 < c− ε = h(θ∗)− ε < h(θ̂n) < h(θ∗) + ε = c+ ε (5.33)

with probability greater than 1 − ε for all large n. Hence Wn = nh(θ̂n) tends to

infinity in probability as n −→∞. Therefore,

lim
n
Pθ∗ (Wn ∈ K) = 1 (5.34)

for any θ∗ ∈
(
Θ0

)c
.

5.3 Rao’s test

In 1947 Rao proposed an alternative to the Wald test statistic based only on

the restricted MLE (see [30], p. 417). Suppose the parameter θ is a function of an

m−dimensional parameter η. The restricted maximum likelihood estimator η̂n is

the solution to the equation

n∑
i=1

D′ (η)
∂

∂θ
log f(Xi;θ(η)) = 0. (5.35)
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Rao showed that the efficient score statistic, given by

1

n

(
n∑
i=1

log f(Xi; θ̃n)

)′
I−1(θ̃n)

(
n∑
i=1

log f(Xi; θ̃n)

)
, (5.36)

where θ̃n = θ(η̂n) and I(θ) is the Fisher information on θ, also converges to a χ2
k

distribution.

A similar test statistic based on the estimator η̂n derived from the best esti-

mating function Ψ∗ for the submodel P∗ can be constructed. Let Ψ be a Fisher

estimating function for the full model and let θ̂n be a solution to the estimating

equation
n∑
i=1

Ψ(Xi;θ) = 0. In Section 5.1 we found the best estimating function

Ψ∗ for P∗ based on a linear transformation of Ψ to be Ψ∗ = D′Ψ. Let η̂n be the

solution to the estimating equation
n∑
i=1

Ψ∗(Xi;η) =
n∑
i=1

D′(η)Ψ(Xi;θ(η)) = 0 and

let θ̃n = θ(η̂n).

Lemma 5.3.1. If θ = θ(η) is continuously differentiable in η and the matrix

D(η) = ∂θ(η)/∂η is of full rank, then under H0 : θ = θ(η),

√
n(θ̂n − θ̃n)

d−→ Ns(0,σ
2(η)) as n −→∞, (5.37)

where

σ2(η) = I−1
Ψ (θ(η))−D(η)I−1

Ψ∗(η)D′(η) (5.38)

is of rank k = s−m.

Proof. Using the representations given in Chapter 2, we can write

√
n(θ̂n − θ) =

1√
n

I−1
Ψ (θ)

n∑
i=1

Ψ(Xi;θ) + op(1) (5.39)
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and

√
n(η̂ − η) =

1√
n

I−1
Ψ∗(η)

n∑
i=1

Ψ∗(Xi;η) + op(1). (5.40)

Since D(η) is assumed continuous in η, we can take a Taylor series expansion of

θ̃n = θ(η̂n) around the point η to get

√
n(θ̃n − θ) =

√
n

(
θ(η) +

∂θ(η∗n)

∂η
(η̂n − η)− θ(η)

)
= D(η)

√
n(η̂n − η) + op(1)

(5.41)

for some η∗n between η̂n. Under H0 we have

√
n(θ̂n − θ̃n) =

√
n(θ̂n − θ)−

√
n(θ(η̂n)− θ(η))

=
1√
n

I−1
Ψ (θ)

n∑
i=1

Ψ(Xi;θ)−D(η)
1√
n

I−1
Ψ∗(η)

n∑
i=1

Ψ∗(Xi;η) + op(1)

=
1√
n

I−1
Ψ (θ)

n∑
i=1

Ψ(Xi;θ)−D(η)I−1
Ψ∗(η)D′(η)

1√
n

n∑
i=1

Ψ(Xi;θ) + op(1)

=
(
I−1
Ψ (θ)−D(η)I−1

Ψ∗(η)D′(η)
) 1√

n

n∑
i=1

Ψ(Xi;θ) + op(1)

d−→ Ns(0,σ
2(η))

(5.42)

as n −→∞, where

σ2(η) =
(
I−1
Ψ (θ(η))−D(η)I−1

Ψ∗(η)D′(η)
)

IΨ(θ(η))
(
I−1
Ψ (θ(η))−D(η)I−1

Ψ∗(η)D′(η)
)′

= I−1
Ψ (θ(η))−D(η)I−1

Ψ∗(η)D′(η),

(5.43)

due to the fact that IΨ∗(η) = D′(η)IΨ(θ(η))D(η). Let P(θ) be the symmetric

square root of the positive definite matrix IΨ(θ) so that P2(θ) = IΨ(θ). Simple

calculations show that the matrix P(θ(η))σ2(η)P(θ(η)) is symmetric and idem-

potent, hence its rank is equal to its trace. Since multiplication by a nonsingular
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matrix does not change the rank, the rank of σ2(η) is the same as the rank of

P(θ(η))σ2(η)P(θ(η)) and we have

Rank
(
σ2(η)

)
= Rank

(
P(θ(η))σ2(η)P(θ(η))

)
= trace

(
P(θ(η))σ2(η)P(θ(η))

)
= trace

(
σ2(η)P2(θ(η))

)
= trace

(
σ2(η)IΨ(θ(η))

)
= trace

(
Is×s −D(η)I−1

Ψ∗(η)D′(η)IΨ(θ(η))
)

= s− trace
(
D(η)I−1

Ψ∗(η)D′(η)IΨ(θ(η))
)

= s− trace
(
I−1
Ψ∗(η)D′(η)IΨ(θ(η))D(η)

)
= s− trace

(
I−1
Ψ∗(η)IΨ∗(η)

)
= s− trace (Im×m)

= s−m = k.

(5.44)

The next Lemma gives us the distribution of a quadratic form Y′AY when Y

is a Gaussian random vector with a possibly singular covariance matrix.

Lemma 5.3.2. (Ogasawara and Takahashi, 1951) Let Y ∼ Nn(µ,Σ). A necessary

and sufficient condition that (Y − µ)′A(Y − µ) have χ2
r distribution is

ΣAΣAΣ = ΣAΣ (5.45)

and

r = Rank(AΣ) (5.46)

Proof. See [30], p. 188.
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Theorem 5.3.3. Under the conditions of Lemma (5.3.1), if I−1
Ψ (θ) is continuous

in θ and

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ
Ψ(Xi;θ)− E

(
∂

∂θ
Ψ(Xi;θ)

)∥∥∥∥∥ = op(1) (5.47)

then under H0 : θ = θ(η),

Rn =
1

n

(
n∑
i=1

Ψ(Xi; θ̃n)

)′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ(Xi; θ̃n)

)
d−→ χ2

k (5.48)

as n −→∞.

Proof. We can take a Taylor series expansion of Ψ(Xi, θ̃n) around the point θ̂n.

Since
n∑
i=1

Ψ
(
Xi; θ̂n

)
= 0, we have for some θ∗n between θ̃n and θ̂n,

1√
n

n∑
i=1

Ψ(Xi; θ̃n) =
1√
n

n∑
i=1

Ψ(Xi; θ̂n) +

√
n

n

n∑
i=1

∂

∂θ
Ψ(Xi;θ

∗
n)(θ̃n − θ̂n)

= −IΨ(θ(η))
√
n(θ̃n − θ̂n) + op(1)

d−→ Ns(0,σ
2(θ)) as n −→∞,

(5.49)

by Lemma (5.3.1) and equation (5.47), where

σ2(η) = IΨ(θ(η))− IΨ(θ(η))D(η)IΨ∗(η)D′(η)IΨ(θ(η)). (5.50)

Direct calculations show that

σ2(η)I−1
Ψ (θ(η))σ2(η)I−1

Ψ (θ(η))σ2(η) = σ2(η)I−1
Ψ (θ(η))σ2(η) (5.51)

and Rank
(
I−1
Ψ (θ(η))σ2(η)

)
= k. Since I−1

Ψ (θ) is assumed continuous, by Lemma

(5.3.2) and Slutsky’s theorem,

1

n

(
n∑
i=1

Ψ(Xi; θ̃n)

)′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ(Xi; θ̃n)

)
d−→ χ2

k as n −→∞. (5.52)
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It is well known that despite their very different constructions, the Rao score

test statistic (using the restricted MLE) is asymptotically equivalent to the Wald

test statistic (based on the unrestricted MLE) when the null hypothesis is true, in

the sense that the difference of the two statistics converges in probability to zero

(see [35]). We will now show that the analogues of the Rao and Wald test statistics

given in Theorems (5.2.1) and (5.3.3) are also asymptotically equivalent.

Theorem 5.3.4. Suppose the hypothesis R(θ) = 0 is equivalent to the hypothesis

that θ = θ(η). Then

Rn −Wn = op(1) (5.53)

as n −→∞.

Proof. Since R(θ(η)) = 0 for any η ∈ H it follows that R(θ̃n) = R(θ(η̂n)) = 0.

Taking a Taylor series expansion around the point θ̂n gives for some θ∗n between θ̂n

and θ̃n

0 = R(θ̃n) = R(θ̂n) +
∂R

∂θ
(θ∗n)(θ̃n − θ̂n)

= R(θ̂n)− ∂R(θ)

∂θ
(θ̃n − θ̂n) + op(1)

(5.54)

since θ̃n − θ̂n = op(1) under H0. Then the statistic Wn can be written as

Wn = nR′(θ̂n)

(
∂R(θ̂n)

∂θ
I−1
Ψ (θ̂n)

∂R′(θ̂n)

∂θ

)−1

R(θ̂n)

= n
(
θ̂n − θ̃n

)′ ∂R′(θ)

∂θ

(
∂R(θ)

∂θ
I−1
Ψ (θ)

∂R′(θ)

∂θ

)−1
∂R(θ)

∂θ

(
θ̂n − θ̃n

)
+ op(1)

(5.55)
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while the statistic Rn can be written as

Rn =
1

n

(
n∑
i=1

Ψ(Xi; θ̃n)

)′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ(Xi; θ̃n)

)

= n
(
θ̂n − θ̃n

)′
IΨ(θ)

(
θ̂n − θ̃n

)
+ op(1).

(5.56)

From Lemma (5.3.1),
√
n
(
θ̂n − θ̃n

)
d−→ Z ∼ Ns (0,σ2(η)) where σ2(η) = I−1

Ψ (θ)−

D(η)I−1
Ψ∗(η)D′(η) is of rank k. We can write Z = B(η)Y where Y ∼ Nk (0, Ik×k)

and B(η) is an s×k matrix of rank k such that B(η)B′(η) = σ2(η). Then Rn−Wn

can be written as (dropping the argument θ(η)),

Rn −Wn = n
(
θ̂n − θ̃n

)′ [
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

](
θ̂n − θ̃n

)
+ op(1)

= Y′B′

[
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

]
BY + op(1)

= Y′AY + op(1).

(5.57)

The matrix A is clearly symmetric. Since R(θ(η)) = 0 for all η ∈ H it follows that

∂/∂ηR(θ(η)) = ∂/∂θR(θ)∂θ/∂η = 0. Therefore,

A2 = B′

[
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

] (
I−1
Ψ −DI−1

Ψ∗D
′)

[
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

]
B

= B′

(
IΨ − IΨDI−1

Ψ∗D
′IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

)
B.

(5.58)

The term C = B′IΨDI−1
Ψ∗D

′IΨB is symmetric, and direct calculations show that

C2 = 0. It follows that C = 0. Therefore, A is a symmetric, idempotent matrix

89



and rank(A) =trace(A). Using equation (5.44) gives

Rank(A) = trace(A) = trace

(
B′

[
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

]
B

)

= trace

([
IΨ −

∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

]
σ2

)

= k − trace

(
∂R′

∂θ

(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1
∂R

∂θ

[
IΨ −DI−1

Ψ∗D
′])

= k − trace

((
∂R

∂θ
I−1
Ψ

∂R′

∂θ

)−1(
∂R

∂θ
I−1
Ψ

∂R′

∂θ

))

= k − k = 0.

(5.59)

Therefore, A = 0 and Rn −Wn = op(1).

As with the version of the Wald statistic, the version of the Rao statistic Rn

can be used as an asymptotic level α test statistic with critical region K = (χ2
α,k,∞).

We now show that the sequence of tests based on Rn is consistent.

Theorem 5.3.5. Let Θη = {θ ∈ Θ : θ = θ(η), η ∈ H}. Suppose the conditions

of Theorem (4.1.4) hold so that for each θ∗ ∈
(
Θη

)c
, there exists a unique point

η∗ ∈ H such that Eθ∗Ψ̂(x;η∗) = 0. If the conditions of Theorem (5.3.3) hold, the

sequence of tests based on Rn is asymptotically consistent at level α against any

alternative θ∗ ∈
(
Θη

)c
.

Proof. Fix θ∗ ∈
(
Θη

)c
. By Theorem (4.1.4), η̂n is a

√
n-consistent estimator of η∗

and θ̃n = θ (η̂n) is a
√
n-consistent estimator of θ (η∗). Then

√
n
(
θ̂n − θ̃n

)
=
√
n
(
θ̂n − θ∗

)
−
√
n
(
θ̃n − θ (η∗)

)
+
√
n (θ∗ − θ (η∗))

=
√
n (θ∗ − θ (η∗)) + Op(1)

=
√
n
(
θ∗ − θ (η∗) + Op(1/

√
n)
)

(5.60)
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Then

1√
n

n∑
i=1

Ψ
(
Xi; θ̃n

)
= −IΨ(θ)

√
n
(
θ̂n − θ̃n

)
+ op(1)

= −IΨ(θ)
√
n
(
θ∗ − θ (η∗) + Op

(
1/
√
n
))

+ op(1),

(5.61)

and the quadratic form Rn becomes

Rn = n
(
θ∗ − θ (η∗) + Op

(
1/
√
n
))′

IΨ(θ)
(
θ∗ − θ (η∗) + Op

(
1/
√
n
))

+ op(1).

(5.62)

The vector θ∗ − θ (η∗) is not the zero vector, so since IΨ(θ) is assumed positive

definite,

(
θ∗ − θ (η∗) + Op

(
1/
√
n
))′

IΨ(θ)
(
θ∗ − θ (η∗) + Op

(
1/
√
n
))

p−→ (θ∗ − θ (η∗))′ IΨ(θ) (θ∗ − θ (η∗)) > 0

(5.63)

and it follows that

lim
n
Pθ∗ (Rn ∈ K) = 1 (5.64)

for any fixed θ∗ ∈
(
Θη

)c
.

As an example, consider the family P = {Pθ : θ ∈ Θ ⊆ Rs} and the submodel

P ′ = {P ′η : η ∈ H ⊆ Rm} of P , where the submodel is related to the full model

through the function

θ(η) = (η1, · · · , ηm, 0, · · · , 0)′ = (η′,0′)
′
. (5.65)

Suppose the density functions f(x;θ) exist (with respect to the measure µ) and let

Ψ(x;θ) be a Fisher estimating function for the full model P . Using the methods of
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Section 5.1, we can see that the best estimating function Ψ∗(x;η) for P ′ is given by

Ψ∗ (x;η) = D′(η)Ψ (x;θ(η)) =


Ψ1 (x;η,0)

· · ·

Ψm (x;η,0)

 , (5.66)

since

D(η) =
∂θ(η)

∂η
=

Im×m 0m×k

0k×m 0k×k

 (5.67)

where k = s −m. Let θ̂n, η̂n and θ̃n be defined as in previous sections. Then by

Theorem (5.3.3), under the hypothesis θ = θ(η),

1

n

(
n∑
i=1

Ψ
(
Xi; θ̃n

))′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ
(
Xi; θ̃n

))
d−→ χ2

k (5.68)

as n −→∞.

Notice that under the null hypothesis, the density can be written as

f(x; θ1, · · · , θm, 0, . . . , 0), (5.69)

returning us to the setup of Chapter 4. We can use the results of Chapter 4 to

find the behavior of the statistics Wn and Rn under the sequence of alternative

hypotheses Hn : X1, . . . ,Xn are i.i.d. with density

f(x; θ1, . . . , θm, cm+1/
√
n, . . . , cs/

√
n). (5.70)

To find the limiting distribution ofWn and Rn under the sequence Hn, we will

make use of the following Lemma:

Lemma 5.3.6. Let Y ∼ Nn (µ,Σ). A set of necessary and sufficient conditions

for Y′AY to follow a non-central χ2 distribution with r degrees of freedom and
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non-centrality parameter δ is

r = Rank (AΣ) , (5.71)

µ′ (AΣ)2 = µ′AΣ, (5.72)

and

δ = µ′Aµ. (5.73)

Proof. See [38].

Let

ĨΨ(η) =

[
Ĩ1
Ψ(η) Ĩ2

Ψ(η)

]
=

[
E
(
Ψ

a
l
′
1

)
E
(
Ψ

a
l
′
2

)]
=

[
E
(
Ψ

a
l
′)] (5.74)

as in Chapter 4.

Theorem 5.3.7. Suppose the conditions of Theorem (5.2.1) and Theorem (5.3.3)

hold. If the square root of the density f(x;θ) is differentiable in quadratic mean at

the point ξ′ = (η′,0′) then under Hn : θ′n = (η′, δ′n),

Wn = nR′(θ̂n)

(
∂R(θ̂n)

∂θ
I−1
Ψ (θ̂n)

∂R′(θ̂n)

∂θ

)−1

R(θ̂n)
d−→ χ2

k,γ (5.75)

and

Rn =
1

n

(
n∑
i=1

Ψ
(
Xi; θ̃n

))′
I−1
Ψ (θ̃n)

(
n∑
i=1

Ψ
(
Xi; θ̃n

))
d−→ χ2

k,γ, (5.76)

where

γ = c′Ĩ2′

ΨIΨ

(
I−1
Ψ −DI−1

Ψ∗D
′) IΨĨ2

Ψc. (5.77)

Furthermore,

Wn −Rn = op(1). (5.78)
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Proof. If the square root of the density f(x;θ) is differentiable in quadratic mean

at the point ξ′ = (η′,0′), it follows from the comment following Theorem (4.2.2)

that the measures Pn = Pθn and Qn ≡ Q = Pη,0 are mutually contiguous. Then,

since θ̃n −→ θ(η) in Q−probability, it follows that θ̃n −→ θ(η) in Pn−probability.

To see this, fix ε > 0, and let An = {‖θ̃n − θ(η)‖ > ε}. Then by the definition of

contiguity,

lim
n
Q(An) = 0⇔ lim

n
Pn(An) = 0. (5.79)

Since I−1
Ψ (θ) is assumed continuous, I−1

Ψ (θ̃n) −→ I−1
Ψ (θ(η)) as n −→ ∞ in Pn−

probability as well. Also, by Theorem (5.3.4), Wn − Rn = op(1) when the true

distribution is Q. Therefore, Wn − Rn = op(1) under Hn as well, proving (5.78),

and (5.75) will follow from (5.76).

Assume that the square root of the density f(x;θ) is differentiable in quadratic

mean at the point ξ = (η1, . . . , ηm, 0, . . . , 0)′. In the proof of Theorem (5.3.3) it was

shown that

1√
n

n∑
i=1

Ψ
(
Xi; θ̃n

)
= IΨ(θ)

(
I−1
Ψ (θ)−DI−1

Ψ∗(η)D′
) 1√

n

n∑
i=1

Ψ(Xi;θ) + op(1).

(5.80)

By Theorem (4.2.1) we have

n∏
i=1

log
f(Xi;θ, δn)

f(Xi;θ,0)
=

1√
n

n∑
i=1

c′
a
l2(Xi)−

1

2
c′I22(ξ)c + op(1). (5.81)

where δn = (cm+1/
√
n, . . . , cs/

√
n)′ and c = (cm+1, . . . , cs)

′. Under Q, by the multi-
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variate central limit theorem,
1√
n

n∑
i=1

Ψ
(
Xi; θ̃n

)
n∏
i=1

log f(Xi;θ,δn)
f(Xi;θ,0)

 =
1√
n

n∑
i=1

IΨ

(
I−1
Ψ −DI−1

Ψ∗D
′)Ψ(Xi;θ)

c′
a
l2(Xi)



+

 0

−1
2
c′I22(ξ)c

+ op(1)

d−→ Ns+1


 0

−1
2
c′I22(ξ)c

 ,

σ2(η) Σ(η)

Σ′(η) c′I22(ξ)c




(5.82)

where

σ2(η) = IΨ(θ(η))
(
I−1
Ψ (θ(η))−D(η)I−1

Ψ̂
(η)D′(η)

)
IΨ(θ(η)), (5.83)

and

Σ(η) =
(
IΨ(θ(η))−D(η)I−1

Ψ̂
(η)D′(η)

)
IΨ(θ(η))Ĩ2

Ψ(θ(η))c. (5.84)

Hence, by LeCam’s Third Lemma, under Pn,

1√
n

n∑
i=1

Ψ
(
Xi; θ̃n

)
d−→ Ns

(
Σ(θ),σ2(θ)

)
. (5.85)

Under Hn,

Rn = Y′I−1
Ψ (θ)Y + op(1) (5.86)

where Y ∼ Ns (Σ(θ),σ2(θ)). Straight forward calculations, similar to those used in

the proofs of Lemma (5.3.1) and Theorem (5.3.4) show that Σ′(η)
(
I−1
Ψ (η)σ2(η)

)2
=

Σ′(η)I−1
Ψ (η)σ2(η), Rank(I−1

Ψ (η)σ2(η)) = k, and γ = c′Ĩ2′
ΨIΨ

(
I−1
Ψ −DI−1

Ψ∗D
′) IΨĨ2

Ψc.

Equation (5.76) then follows from Lemma (5.3.6).
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Chapter 6

Combining estimators

6.1 Combining estimators vs. combining estimating functions

Let X = (X1, . . . , Xn1)
′ be a random sample with distribution function F1(x; θ)

and let Y = (Y1, . . . , Yn2)
′ be a second random sample, independent of the first, with

distribution function F2(y; θ), where both F1 and F2 depend on a common univariate

parameter θ. The sample sizes are assumed to be proportional in that n1 = λ1n and

n2 = λ2n, where λ1 and λ2 are positive real numbers such that λ1 + λ2 = 1.

Let Ψ1 = Ψ1(x; θ) be an estimating function for P1 = {F1(x; θ) : θ ∈ Θ} and

let θ̂1 = θ̂1(X1, . . . , Xn1) be a solution to the estimating equation

n1∑
i=1

Ψ1(Xi; θ) = 0 (6.1)

such that

√
n1

(
θ̂1 − θ

)
=

1

n1

C−1
Ψ1

(θ)

n1∑
i=1

Ψ1(Xi; θ) + op(1). (6.2)

Similarly, let Ψ2 = Ψ2(y; θ) be an estimating function for P2 = {F2(y; θ) : θ ∈ Θ}

and let θ̂2 = θ̂2(Y1, . . . , Yn2) be a solution to the estimating equation

n2∑
i=1

Ψ2(Yi; θ) = 0 (6.3)

such that

√
n2

(
θ̂2 − θ

)
=

1

n2

C−1
Ψ2

(θ)

n2∑
i=1

Ψ2(Yi; θ) + op(1). (6.4)
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The question we will address is how to combine the estimators θ̂1 and θ̂2 in

the optimal way, and how that optimal estimator compares to the estimator based

on the combined data from the two independent samples.

For any non-negative functions w1(θ) and w2(θ) with w1(θ) + w2(θ) = 1, the

linear combination w1(θ)θ̂1 + w2(θ)θ̂2 will be asymptotically Gaussian:

√
n
(
w1(θ)θ̂1 + w2(θ)θ̂2 − θ

)
=
w1(θ)√
λ1

√
n1

(
θ̂1 − θ̂2

)
+
w2(θ)√
λ2

√
n2

(
θ̂2 − θ

)
d−→ N

(
0, σ2(θ)

) (6.5)

as n −→∞ for

σ2(θ) =
w2

1(θ)

λ1IΨ1(θ)
+

w2
2(θ)

λ2IΨ2(θ)
. (6.6)

The variance σ2(θ) is minimized when

w1(θ) =
λ1IΨ1(θ)

λ1IΨ1(θ) + λ2IΨ2(θ)
(6.7)

and w2(θ) = 1− w1(θ), and the minimal variance is

1

λ1IΨ1(θ) + λ2IΨ2(θ)

. (6.8)

Clearly,

1

λ1IΨ1(θ) + λ2IΨ2(θ)
≤ min

(
1

λ1IΨ1(θ)
,

1

λ2IΨ2(θ)

)
(6.9)

so that optimal linear combination of θ̂1 and θ̂2 is better than either θ̂1 or θ̂2.

Let θ∗n be an initial consistent estimate of θ. For example, we can choose

θ∗n = 1/2θ̂1 + 1/2θ̂2. We will estimate the weight functions with w1(θ∗n) and w2(θ∗n).

Theorem 6.1.1. If the weight function w1(θ) is continuously differentiable, then

√
n
(
w1(θ∗n)θ̂1 + w2(θ∗n)θ̂2 − θ

)
d−→ N

(
0,

1

λ1IΨ1(θ) + λ2IΨ2(θ)

)
(6.10)

as n −→∞.
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Proof. Expand the function w1(θ∗n) in a Taylor series around the point θ to get

w1(θ∗n) = w1(θ) + w′1(θ̃1)(θ∗n − θ) (6.11)

for some θ̃1 between θ and θ∗n. Since w1(θ) + w2(θ) = 1 for all θ, it follows that

w′1(θ) = −w′2(θ). We can then rewrite
√
n
(
w1(θ∗n)θ̂1 + w2(θ∗n)θ̂2 − θ

)
as

√
n

(
w1(θ∗n)θ̂1 + (1− w1(θ∗n))θ̂2 − θ

)
=
√
n

[(
w1(θ) + w′1(θ̃1)(θ∗n − θ)

)
θ̂1 − w1(θ)θ

+
(

1− w1(θ)− w′1(θ̃1)(θ∗n − θ)
)
θ̂2 − w2(θ)θ

]

= w1(θ)
√
n
(
θ̂1 − θ

)
+ w2(θ)

√
n
(
θ̂2 − θ

)
+ w′1(θ̃1)

√
n(θ∗n − θ)(θ̂1 − θ̂2)

=
w1(θ)

λ1

√
n1

(
θ̂1 − θ

)
+
w2(θ)

λ2

√
n2

(
θ̂2 − θ

)
+ op(1)

(6.12)

since (θ∗n − θ) = op(1) and w′1(θ̃1)
√
n(θ̂1 − θ̂2) = Op(1). Also,

w1(θ)

λ1

√
n1

(
θ̂1 − θ

)
d−→ N

(
0,
w2

1(θ)

λ2
1

λ1I
−1
Ψ1

(θ)

)
(6.13)

while

w2(θ)

λ2

√
n2

(
θ̂2 − θ

)
d−→ N

(
0,
w2

2(θ)

λ2
2

λ2I
−1
Ψ2

(θ)

)
. (6.14)

Since θ̂1 and θ̂2 are independent, we have

√
n
(
w1(θ∗n)θ̂1 + w2(θ∗n)θ̂2 − θ

)
d−→ N

(
0, σ2(θ)

)
(6.15)
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where

σ2(θ) =
w2

1(θ)

λ1IΨ1(θ)
+

w2
2(θ)

λ2IΨ2(θ)

=
λ1IΨ1(θ)

(λ1IΨ1(θ) + λ2IΨ2(θ))
2 +

λ2IΨ2(θ)

(λ1IΨ1(θ) + λ2IΨ2(θ))
2

=
1

λ1IΨ1(θ) + λ2IΨ2(θ)
.

(6.16)

Now, suppose the common parameter θ is s−dimensional. To combine the

estimators θ̂1 and θ̂2 in the optimal way, we should use the (s× s) matrices

w1(θ) = λ1 (λ1IΨ1(θ) + λ2IΨ2(θ))−1 IΨ1(θ) (6.17)

and w2(θ) = Is×s −w1(θ) as the weight functions, so that

w1(θ) (λ1IΨ1(θ))−1 w′1(θ) + w2(θ) (λ2IΨ2(θ))−1 w′2(θ) = (λ1IΨ1(θ) + λ2IΨ2(θ))−1 .

(6.18)

It follows by an identical argument as was used in the proof of (6.1.1) that if w1(θ)

is continuously differentiable in θ and θ∗n is an initial consistent estimator of θ, that

√
n
(
w1(θ∗n)θ̂1 + w2(θ∗n)θ̂2 − θ

)
d−→ Ns

(
0, (λ1IΨ1(θ) + λ2IΨ2(θ))−1) (6.19)

as n −→∞.

To compare the best linear combination of the estimators θ̂1 and θ̂2 to an esti-

mator θ̂n using the entire combined sample Z′ = (X′,Y′) we need to first investigate

how to combine the estimating functions Ψ1 and Ψ2.

Theorem 6.1.2. Let X = (X1, . . . ,Xn1) be a random sample with distribution

function F1(x;θ), with θ ∈ Rs, and let Ψ1 = Ψ1(X;θ) =
n1∑
i=1

Ψ1(Xi;θ) be an

99



estimating function for θ based on the sample X. Let Y = (Y1, . . . ,Yn2) be a

second random sample, independent of X, with distribution function F2(y; θ), and

let Ψ2 = Ψ2(Y;θ) =
n2∑
i=1

Ψ2(Yi;θ) be an estimating function for θ based on the

random sample Y. Let Z′ = (X′,Y′) represent the combined samples. The best

estimating function Ψ = Ψ(Z;θ) for θ based on the combined samples Z in the

class of estimating functions Ψ∗(Z;θ) = A1(θ)Ψ1 + A2(θ)Ψ2 is

Ψ = Ψ (Z;θ) = C′Ψ1
(θ)B−1

Ψ1
(θ)Ψ1(X;θ) + C′Ψ2

(θ)B−1
Ψ2

(θ)Ψ2(Y;θ). (6.20)

Proof. First notice that

CΨ(θ) = C′Ψ1
B−1

Ψ1
CΨ1 + C′Ψ2

B−1
Ψ2

CΨ2 = IΨ1 + IΨ2 = BΨ(θ). (6.21)

Therefore Ψ defines an estimating function (since CΨ must be nonsingular, due to

the positive definiteness of IΨ1 and IΨ2) that is in Fisher form.

Let Ψ∗ = Ψ∗(X,Y;θ) = A1(θ)Ψ1 + A2(θ)Ψ2 be any linear combination of

the estimating functions Ψ1 and Ψ2. To prove the optimality of the estimating

function Ψ we need to show that

IΨ = IΨ1 + IΨ2

≥ (A1CΨ1 + A2CΨ2)
′ (A1BΨ1A

′
1 + A2BΨ2A

′
2)
−1

(A1CΨ1 + A2CΨ2)

= IΨ∗

(6.22)

This follows from the non-negative definiteness of the covariance matrix for the
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vector Ψ−C′Ψ∗B
−1
Ψ∗Ψ

∗.

0 ≤ Eθ
(
Ψ−C′Ψ∗B

−1
Ψ∗Ψ

∗) (Ψ−C′Ψ∗B
−1
Ψ∗Ψ

∗)′
= Eθ (ΨΨ′)− Eθ

(
ΨΨ∗′

)
B−1

Ψ∗CΨ∗ −C′Ψ∗B
−1
Ψ∗Eθ (Ψ∗Ψ′)

+ C′Ψ∗B
−1
Ψ∗Eθ

(
Ψ∗Ψ∗′

)
B−1

Ψ∗CΨ∗

= IΨ − Eθ
(
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2

)
(A1Ψ1 + A2Ψ2)′B−1

Ψ∗CΨ∗

−C′Ψ∗B
−1
Ψ∗Eθ (A1Ψ1 + A2Ψ2)

(
C′Ψ1

B−1
Ψ1

Ψ1 + C′Ψ2
B−1

Ψ2
Ψ2

)′
+ IΨ∗

= IΨ − (A1CΨ1 + A2CΨ2)
′B−1

Ψ∗CΨ∗

−C′Ψ∗B
−1
Ψ∗ (A1CΨ1 + A2CΨ2) + IΨ∗

= IΨ − 2C′Ψ∗B
−1
Ψ∗CΨ∗ + IΨ∗ = IΨ − IΨ∗

(6.23)

There is also a geometric interpretation of this result. In Chapter 2 we showed

that if C = {Ψ1, . . . ,Ψk} is a finite collection of estimating functions and H =

Span{Ψ1, . . . ,Ψk} is the closed linear span of the elements in C, then the optimal

estimating function Ψ in H is the projection of the Fisher score function onto H.

That is, if Ψ = Êθ (J H), then IΨ(θ) ≥ IΨ∗(θ) for any estimating function Ψ∗ ∈ H.

It is easy to show that

Ψ = Êθ (J | Ψ1, Ψ2) = C′Ψ1
B−1

Ψ1
Ψ1 + C′Ψ2

B−1
Ψ2

Ψ2, (6.24)

giving an alternate proof of Theorem (6.1.2).

We now describe the behavior of the estimator that is the solution to the best

linear combination of the estimating functions Ψ1 and Ψ2 given in Theorem (6.1.2).
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Theorem 6.1.3. Suppose P1 = {P1,θ : θ ∈ Θ ⊆ Rs} and P2 = {P2,θ : θ ∈ Θ ⊆ Rs}

are two parametric families depending on a common parameter θ. Let Ψ1 be an

estimating function for P1 and Ψ2 be an estimating function for P2. Let θ̂n = θ̂n(Z)

be the solution of the estimating equation

Ψ(Z;θ) = CΨ1(θ)B−1
Ψ2

(θ)

n1∑
i=1

Ψ1(Xi;θ) + CΨ2(θ)B−1
Ψ2

n2∑
i=1

Ψ2(Yi;θ)

=

n1∑
i=1

Ψ̂1(Xi;θ) +

n2∑
i=1

Ψ̂2(Yi;θ) = 0

(6.25)

where Ψ̂1 and Ψ̂2 are the Fisher forms of Ψ1 and Ψ2 respectively. If

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ
Ψ̂j (Xi;θ)− E

(
∂

∂θ
Ψ̂j(x;θ)

)∥∥∥∥∥ = op(1) (6.26)

for j = 1, 2 as n −→∞ then

√
n
(
θ̂n − θ

)
d−→ Ns

(
0, (λ1IΨ(θ)− λ2IΨ(θ))−1) (6.27)

as n −→∞.

Proof. Expand Ψ(Z; θ̂n) in a Taylor series around the point θ to get

0 = Ψ(Z; θ̂n) =

n1∑
i=1

Ψ̂1(Xi; θ̂n) +

n2∑
i=1

Ψ̂2(Y; θ̂n)

=

n1∑
i=1

Ψ̂1(Xi;θ) +

n2∑
i=1

Ψ̂2(Yi;θ)

+

(
n1∑
i=1

∂

∂θ
Ψ̂1(Xi; θ̃n) +

n2∑
i=1

∂

∂θ
Ψ̂2(Yi; θ̃n)

)(
θ̂n − θ

)
(6.28)

for some vector θ̃n between θ̂n and θ. Rearranging gives

√
n
(
θ̃n − θ

)
=

(
−λ1

n1

n1∑
i=1

∂

∂θ
Ψ̂1(Xi; θ̃n)− λ2

n1

n2∑
i=1

∂

∂θ
Ψ̂2(Yi; θ̃n)

)−1

×

(√
λ1√
n1

n1∑
i=1

Ψ̂1(Xi;θ) +

√
λ2√
n2

n2∑
i=1

Ψ̂2(Yi;θ)

) (6.29)
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Here we use the fact that for the Fisher estimating function Ψ̂1(x;θ) (and similarly

for Ψ̂2),

− 1

n1

n1∑
i=1

∂

∂θ
Ψ̂1(Xi;θ)

p−→ −Eθ
(
∂

∂θ
Ψ̂1(x;θ)

)
= CΨ̂1

(θ) = IΨ̂1
(θ) = IΨ1(θ)

(6.30)

as n1 −→∞. Since the first and second sample are assumed independent, and

1
√
n1

n1∑
i=1

Ψ̂1(Xi;θ)
d−→ Ns

(
0, I−1

Ψ1
(θ)
)

(6.31)

as n1 −→∞ we have

√
n
(
θ̃n − θ

)
d−→ Ns

(
0, (λ1IΨ1(θ) + λ2IΨ2(θ))−1) (6.32)

as n −→∞.

This result is somewhat counterintuitive, since the limiting distribution of the

estimator θ̃n = θ̃n(X1, . . . ,Xn1 ,Y1, . . . ,Yn2), which is the solution of the estimating

equation based on the best linear combination of the estimating functions Ψ1 and

Ψ2, is the same as the limiting distribution of the best linear combination of the

estimators θ̂1 and θ̂2. That is, asymptotically, we can do as well using only the

estimators θ̂1 and θ̂2 as we can calculating an estimator θ̃n based on the entire

combined sample.

6.2 Estimation of a bivariate location parameter

6.2.1 The Pitman estimator of a location parameter

If X1, . . . , Xn is a random sample corresponding to the distribution function

F (x−µ), where µ is a univariate location parameter, we saw in Section 3.1 that the
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Pitman estimator of µ under quadratic loss is

tn = X − E0(X X1 −X, . . . , Xn −X) (6.33)

and that (for n ≥ 3) tn = X if and only if F is Gaussian.

In this section we consider samples from a distribution depending on a bivariate

location parameter. Let θ = (θ1, θ2)′ ∈ Θ = R2 and (X ,A) = (R2n,B2n), where B2n

is the σ−algebra of Borel sets in R2n, and

Pθ(A) =

∫
A

dF (x− θ) =

∫
A

dF (x1 − θ) · · · dF (xn − θ). (6.34)

We will be interested in estimating linear functions of the parameter θ.

Let (X1, Y1)′, . . . , (Xn, Yn)′ be a random sample with distribution function

F (x − θ1, y − θ2). Our goal is to estimate ∆ = c1θ1 + c2θ2 where c1 and c2 are

known constants. For reasons discussed in Section 3.1, it makes sense to restrict

our attention to estimators that are equivariant. For the case of the bivariate lo-

cation family, an estimator θ̂ = θ̂(X,Y) of c1θ1 + c2θ2 is equivariant if for any

a1 ∈ R, a2 ∈ R,

θ̂(X + a1,Y + a2) = θ̂(X,Y) + c1a1 + c2a2. (6.35)

One such estimator is c1X + c2Y .

When using an equivariant estimator, the estimation of c1θ1 + c2θ2 by θ̂(X,Y)

should be identical to the estimation of c1(θ1 +a1)+c2(θ2 +a2) by θ̂(X+a1,Y+a2),

and this should be reflected in the loss function. We say that the loss function

L(δ; θ1, θ2) is invariant if

L(δ(X + a1,Y + a2); θ1 + a1, θ2 + a2) = L(δ(X,Y); θ1, θ2). (6.36)
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When calculating the loss of an equivariant estimator with an invariant loss

function, both the bias and the risk of the estimator are independent of the param-

eter θ = (θ1, θ2)′. To see why, let δ(X,Y) be any equivariant estimator. Then

Eθ(δ(X,Y)) =

∫
δ(x,y)f(x− θ1,y − θ2)dxdy

=

∫
δ(x + θ1,y + θ2)f(x,y)dxdy

=

∫
(δ(x,y) + c1θ1 + c2θ2)f(x,y)dxdy

=

∫
(δ(x,y)f(x,y)dxdy + c1θ1 + c2θ2

= E0(δ(X,Y)) + c1θ1 + c2θ2

(6.37)

so that the bias, Eθ(δ(X,Y) − (c1θ1 + c2θ2)) = E0δ(X,Y), is independent of θ.

A similar calculation shows that if L(δ(X,Y)) is an invariant loss function, then

R(δ(X,Y)) = EθL(δ(X,Y)) is independent of θ. This is an important fact, because

it allows us to compare equivariant estimators. That is, if δ1 and δ2 are equivariant,

then either R(δ1,θ) > R(δ2,θ), R(δ1,θ) < R(δ2,θ), or R(δ1,θ) = R(δ2,θ) for all

θ ∈ Θ.

Following the method used in Lehman and Casella ([8]), we now describe the

class of equivariant estimators.

Lemma 6.2.1. A function u(X,Y) satisfies

u(X,Y) = u(X + a1,Y + a2) (6.38)

for any a = (a1, a2)′ ∈ R2 if and only if

u(X,Y) = u(X1 −X, . . . , Xn −X,Y1 − Y , . . . , Yn − Y ). (6.39)
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Proof. If u satisfies (6.39) then clearly it satisfies (6.38). If u satisfies (6.38), then

we can set a1 = −X and a2 = −Y to get (6.39).

Lemma 6.2.2. If δ(X,Y) is equivariant, then an estimator δ′(X,Y) is equivariant

if and only if

δ′(X,Y) = δ(X,Y) + u(X,Y), (6.40)

where u satisfies (6.39) for any a = (a1, a2)′ ∈ R2.

Proof. If δ′ = δ + u then

δ′(X + a1,Y + a2) = δ(X + a1,Y + a2) + u(X + a1,Y + a2)

= δ(X,Y) + u(X,Y) + c1a1 + c2a2

= δ(X,Y) + c1a1 + c2a2.

(6.41)

Conversely, if δ′ is equivariant then we can set u = δ′ − δ.

One equivariant estimator is δ0(X,Y) = c1X + c2Y . By Lemma (6.2.2), any

equivariant estimator of ∆ = c1θ1 + c2θ2 can be written as δ(X,Y) = c1X + c2Y +

u(X,Y). Finding the minimum risk equivariant estimator under an invariant loss

function then amounts to finding a function u which minimizes R(δ0 + u;θ) =

EθL(δ0 + u;θ). But since the risk is independent of the parameter θ, it suffices to

minimize R(δ0 + u; 0) = E0L(δ0 + u; 0).

We define the Pitman estimator of ∆ to be the minimum risk equivariant

estimator under quadratic loss, L(g̃, g) = (g̃(X) − g(θ))2. This is an invariant loss

function, so to find the form of the Pitman estimator of ∆ we need to find the

function u which minimizes E0 (δ(X,Y)− u(Z))2, where

Z = (X1 −X, . . . , Xn −X,Y1 − Y , . . . , Yn − Y ) (6.42)
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is the vector of residuals. Let v∗ = v∗(Z) = E0(δ(X,Y) | Z). Then

E0((δ0 − v)2 | Z) = E0((δ0 − v∗ + v∗ − v)2 | Z)

= E0((δ0 − v∗)2 | Z) + (v∗ − v)2 + 2E0((δ0 − v∗)(v∗ − v) | Z)

= E0((δ0 − v∗)2 | Z) + (v∗ − v)2 + 2(v∗ − v)(E0(δ0 | Z)− v∗)

= E0((δ0 − v∗)2 | Z) + (v∗ − v)2

≥ E0((δ0 − v∗)2 | Z).

(6.43)

Taking expectations of both sides gives R(δ0 + v∗; 0) ≤ R(δ; 0) for any equivariant

estimator δ. This gives us the form of the minimum risk equivariant estimator of

c1θ1 + c2θ2 under quadratic loss.

Theorem 6.2.3. Let (X1, Y1)′, . . . , (Xn, Yn)′ be a sample from a location family

F (X − θ1, Y − θ2). Under quadratic loss, the Pitman estimator of ∆ = c1θ1 + c2θ2

is

tn(X,Y) = c1X + c2Y − E0

(
c1X + c2Y Z

)
(6.44)

where Z = (X1 −X, . . . , Xn −X,Y1 − Y , . . . , Yn − Y ).

The Pitman estimator of θ1 based on the observations X1, . . . , Xn is

tx = X − E0

(
X | X1 −X, . . . , Xn −X

)
(6.45)

and the Pitman estimator of θ2 based on the observations Y1, . . . , Yn is

ty = Y − E0

(
Y | Y1 − Y , . . . , Yn − Y

)
. (6.46)

It is of interest to consider when tn = c1tx + c2ty. This is the case when the samples

X and Y are independent. The proof follows directly from the following Lemma:
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Lemma 6.2.4. Let ξ, η1, and η2 be random variables with E | X |< ∞. Suppose

that (ξ, η1) and η2 are independent. Then

E (ξ | (η1, η2)) = E (ξ | η1) a.s. (6.47)

Proof. See [31], p. 35.

If, in addition, we assume that the distribution function F has density f with

respect to Lebesgue measure, the Pitman estimator (6.44) can be written in integral

form

t(X,Y) =

∫∫
(c1s+ c2t)

∏n
i=1 f(Xi − s, Yi − t)dsdt∫∫ ∏n

i=1 f(Xi − s, Yi − t)dsdt
. (6.48)

The above form of the Pitman estimator of c1θ1+c2θ2 follows from (6.44) by calculat-

ing the conditional density of (X,Y ) given the vector of residuals Z, and calculating

the conditional expectation E0

(
c1X + c2Y Z

)
.

6.2.2 Linearity of the Pitman estimator

In the class F of bivariate distributions F with fixed, finite covariance Σ,

the risk of the Pitman estimator, Eθ(tn − ∆)2, is maximized when it is of the

form tn(X,Y) = c1X + c2Y . If (X, Y )′ has bivariate Gaussian distribution with

mean vector (θ1, θ2)′ and covariance matrix Σ, then c1X + c2Y is independent of

the vector of residuals and the Pitman estimator will then be c1X + c2Y . The

next Theorem characterizes the family of all bivariate distributions for which the

Pitman estimator of ∆ is linear, namely, the class of distribution functions F for
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which tn(X,Y) = c1X + c2Y . This is equivalent to describing the class of bivariate

distribution functions for which

E0(c1X + c2Y |X1 −X, . . . , Xn −X,Y1 − Y , . . . , Yn − Y ) = 0. (6.49)

In contrast to the KLR theorem concerning a univariate location parameter, the

family of Gaussian distributions is not the unique family of distributions for which

(6.49) holds.

Theorem 6.2.5. Let (X1, Y1)′, . . . , (Xn, Yn)′, (n ≥ 3) be a random sample from a

location family F (x − θ1, y − θ2) with Ex2 < ∞ and Ey2 < ∞. If the Pitman

estimator of ∆ = c1θ1 + c2θ2 is linear, then F has a characteristic function of the

form

φ(t, s) = eQ(t,s)+h(c2t−c1s) (6.50)

in a neighborhood of 0, where Q is a quadratic form in s and t, and h is a differen-

tiable function with h(0) = 0.

Proof. Let Z = (X1 −X, . . . , Xn −X,Y1 − Y , . . . , Yn − Y ) be the vector of residu-

als. Suppose E0(c1X + c2Y |Z) = 0. Multiply both sides of the equation by

exp

(
i

n∑
i=1

(
ti(Xi −X) + si(Yi − Y )

))
(6.51)

for constants ti and si and take expectations to get

E0

(
(c1X + c2Y )ei

∑n
i=1(ti(Xi−X)+si(Yi−Y ))

)
= 0. (6.52)

Since t1(X1−X)+ · · ·+ tn(Xn−X) = X1(t1− t)+ · · ·+Xn(tn− t), after multiplying
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through by n, we can rewrite equation (6.52) as

n∑
i=1

E0

(
(c1Xi + c2Yi)e

i
∑n
j=1(Xj(tj−t̄)+Yj(sj−s̄))

)
=

n∑
i=1

E0

(
(c1Xi + c2Yi)

n∏
j=1

ei(Xj(tj−t̄)+Yj(sj−s̄))

)

=
n∑
i=1

(
E0

(
(c1Xi + c2Yi)e

i(Xi(ti−t̄)+Yi(si−s̄))
)∏
j 6=i

E0

(
ei(Xj(tj−t)+Yj(sj−s))

))

=
n∑
i=1

(
E0

(
(c1Xi + c2Yi)e

i(Xi(ti−t)+Yi(si−s))
)∏
j 6=i

φ(tj − t, sj − s)

)

=
n∑
i=1

((
c1

i

∂

∂t
φ(ti − t, si − s) +

c2

i

∂

∂s
φ(ti − t, si − s)

) n∏
j 6=i

φ(tj − t, sj − s)

)

= 0

where φ(t, s) = E0e
itx+isy is the characteristic function for the pair (X, Y )′ when θ1 =

θ2 = 0. Since the characteristic function ϕ is uniformly continuous and ϕ(0, 0) = 1,

there exists a δ > 0 such that for any (t, s) ∈ Bδ(0) = {(t, s) : ‖(t, s)‖ < δ}, we have

φ(t, s) 6= 0. Let all points (ti − t, si − s) lie in the ball Bδ(0) and divide through by∏n
i=1 φ(ti − t, si − s) to get

n∑
i=1

(
c1

∂
∂t
φ(ti − t, si − s) + c2

∂
∂s
φ(ti − t, si − s)

φ(ti − t, si − s)

)

=
n∑
i=1

ϕ(ti − t, si − s) = 0.

(6.53)

Fix (t1, s1) and (t2, s2) in Bδ/2(0) and set t3 = −t1 − t2, s3 = −s1 − s2, and t4 =

· · · = tn = s4 = · · · = sn = 0 (so that t = s = 0 as well). Equation (6.53) reduces to

ϕ(t1, s1) + ϕ(t2, s2) + ϕ(−(t1 + t2),−(s1 + s2)) = 0 (6.54)

or

ϕ(t1, s1) + ϕ(t2, s2) = −ϕ(−(t1 + t2),−(s1 + s2)). (6.55)
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If we let t1 = −t2 and s1 = −s2, we see that

ϕ(t, s) = −ϕ(−t,−s). (6.56)

Therefore, (6.55) can be written as

ϕ(t1, s1) + ϕ(t2, s2) = ϕ(t1 + t2, s1 + s2). (6.57)

We see that φ is linear and must have the form

ϕ(t, s) = c1
∂

∂t
log φ(t, s) + c2

∂

∂s
log φ(t, s) = At+Bs (6.58)

for some constants A and B (see [1], p. 215). This is a partial differential equation

of the form c1ut + c2us = At+Bs which has general solution (see [7])

u(t, s) = Q(t, s) + h(c2t− c1s) (6.59)

where Q is quadratic in s and t and h is a differentiable function. Therefore,

φ(t, s) = exp {Q(t, s) + h(c2t− c1s)} (6.60)

for ‖(t, s)‖ < δ.

Let (X1, . . . , Xn) be a random sample with distribution function F (x). It

is well known that the sample mean X is independent of the vector of residuals(
X1 −X, . . . , Xn −X

)
if and only if F is Gaussian (see [21]). The next Theorem

shows that for a bivariate random sample
(
(X1, Y1)′ , . . . , (Xn, Yn)′

)
, the indepen-

dence of c1X + c2Y with the vector of residuals Z characterizes the same family of

bivariate distributions with characteristic function of the form (6.50).
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Theorem 6.2.6. Let
(
(X1, Y1)′ , . . . , (Xn, Yn)′

)
(n ≥ 3) be a random sample from a

distribution F (x, y) with Ex2 <∞ and Ey2 <∞. The linear combination c1X+c2Y

is independent of the vector of residuals Z if and only if the characteristic function

of F is of the form (6.50).

Proof. If c1X+ c2Y is independent of Z, then E
(
c1X + c2Y | Z

)
= 0. By Theorem,

(6.2.5) the characteristic function of F must be of the form (6.50).

Suppose F has a characteristic function of the form (6.50). A necessary and

sufficient condition for a vector of random variables to have independent components

is that its characteristic function is the product of the characteristic functions of its

components (see [32], p. 286). The characteristic function of c1X + c2Y is

E
(
exp

{
iw
(
c1X + c2Y

)})
= E

(
exp

{
i

n∑
k=1

(
wc1

Xk

n
+ wc2

Yk
n

)})

=
n∏
k=1

E

(
exp

{
i

(
wc1

Xk

n
+ wc2

Yk
n

)})

=
n∏
k=1

exp{Q (wc1/n, wc2/n) + h (c2wc1/n− c1wc2/n)}

=
n∏
k=1

exp {Q (wc1/n, wc2/n)}

(6.61)

while the characteristic function of Z is

E

(
exp

{
i

n∑
k=1

[
tk
(
Xk −X

)
+ sk

(
Yk − Y

)]})

=
n∏
k=1

E
(
exp

{
i
(
Xk

(
tk − t

)
+ Yk (sk − s)

)})
=

n∏
k=1

exp
{
Q
(
tk − t, sk − s

)
+ h

(
c2

(
tk − t

)
− c1 (sk − s)

)}
.

(6.62)
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The joint characteristic function of c1X + c2Y and Z is

E

(
exp

{
iw
(
c1X + c2Y

)
+ i

n∑
k=1

[
tk
(
Xk −X

)
+ sk

(
Yk − Y

)]})

=
n∏
k=1

E
(

exp
{
iXk

(
w
c1

n
+ tk − t

)
+ iYk

(
w
c2

n
+ sk − s

)})
=

n∏
k=1

exp
{
Q
(
wc1/n+ tk − t, wc2/n+ sk − s

)
+ h

(
c2

(
tk − t

)
− c1 (sk − s)

)}
.

(6.63)

Since
n∑
k=1

(
tk − t

)
=

n∑
k=1

(sk − s) = 0,

n∑
k=1

Q
(
w
c1

n
+ tk − t, w

c2

n
+ sk − s

)
=

n∑
k=1

(
Q
(
w
c1

n
,w
c2

n

)
+Q

(
tk − t, sk − s

))
.

(6.64)

Therefore, the characteristic function in equation (6.63) is the product of the char-

acteristic functions in equations (6.61) and (6.62) so that c1X + c2Y is independent

of Z.

Theorem (6.2.5) is a similar result to one proved by Yu ([42]). He considered

the class of bivariate distributions depending on a univariate parameter θ of the

form

F (x− θ, y − θ). (6.65)

The Pitman estimator for θ based on a sample (X1, Y1)′, . . . , (Xn, Yn)′ was found to

be

tn(X,Y) = w1X + w2Y

− E0

(
w1X + w2Y | X1 − Y , . . . , Xn − Y , Y1 −X, . . . , Yn −X

) (6.66)

for appropriate non-negative constants w1 and w2 such that w1 + w2 = 1. The
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Pitman estimator was found to be linear in this setup if and only if the distribution

has characteristic function of the form given in Theorem (6.2.5).

The family of distributions with characteristic functions given by (6.50) in-

cludes, but is not limited to, the family of bivariate Guassian distributions. In

addition, a Gaussian distribution convolved with a distribution with mass concen-

trated on the line c2Y − c1X = 0 will have a characteristic function of the form

(6.50). But there are characteristic functions of the form given in (6.50) that cannot

be represented as the product of the characteristic function of a Gaussian distribu-

tion and another characteristic function. The following Theorem is due to Gennady

Feldman at the Ukrainian Academy of Sciences.

Theorem 6.2.7. There exists a characteristic function of the form

φ(t, s) = e−at
2−bs2V (t), a > 0, b > 0 (6.67)

that cannot be represented as e−Q(t,s)W (t) where Q is a nonnegative definite quadratic

form and W (t) is a characteristic function.

Proof. Note that a characteristic function of the form (6.50) can be reduced to the

form (6.67) by a suitable change of variables. Let V (t) = −1/4 + 5/4 cos(t); V (t) is

not a characteristic function. This can be verified using Cramer’s Criterion, ([27], p.

65) which states that a bounded continuous function f(t) is a characteristic function

if and only if i) f(0) = 1 and ii) ψ(x,A) =
∫ A

0

∫ A
0
f(t−u) exp {ix(t− u)}dtdu is real

and non-negative for all real x and for all A > 0. Setting x = 0 and A = 3π/2 gives∫ 3π/2

0

∫ 3π/2

0
V (t−u)dtdu = 5/2−9/16π2 < 0, so that V (t) cannot be a characteristic

function.
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For any σ ≥ σ0 = (4 log(5))−1, ϕ(t) = e−σt
2
V (t) is a characteristic function

while for 0 < σ < σ0, ϕ(t) is not a characteristic function. This is true because

p(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt

=
1

16
√
σπ

[
5ex/σ − 2e(2x+1)/(4σ) + 5

]
e−(x+1)2/(4σ)

(6.68)

is nonnegative and integrates to 1 for any σ ≥ σ0, while p(x) < 0 for some x

if σ < σ0. In particular e−σ0t2−bs2V (t) is a characteristic function since it is the

product of two characteristic functions.

Suppose e−σ0t2−bs2V (t) = e−Q(t,s)W (t). For s = 0, e−σ0t2V (t) = e−kt
2
W (t) for

some k > 0. But this is impossible, since if k ≥ σ0, e−(k−σ0)t2W (t) = V (t). The left

hand side is the product of two characteristic functions, while the right hand side is

not a characteristic function. If k < σ0, e−(σ0−k)t2V (t) = W (t). The left hand side

cannot be a characteristic function since 0 < σ0 − k < σ0.

Theorem (6.2.5) can easily be generalized to the case of location families where

the dimension of the parameter is greater than 2.

Theorem 6.2.8. Let X1 = (X1
1 , . . . , X

k
1 ), . . . ,Xn = (X1

n, . . . , X
k
n) be a sample of

size n ≥ 3 from a location family F (X − θ) for θ ∈ Rk. If the Pitman estimator

of ∆ = c1θ1 + · · · + ckθk has the form C′X, where C′ = [c1, . . . , ck], then F has

characteristic function of the form

φ(t1, . . . , tk) =

exp {Q(t1, . . . , tk) + h(c2t1 − c1t2, c3t2 − c2t3, . . . , cktk−1 − ck−1tk)}.
(6.69)

where h is a differentiable function with h(0) = 0 and Q is a quadratic function in

t1, . . . , tk.
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