Law of Large Numbers for Increasing Subsequences of Random Permutations

Professor Ross Pinsky-Technion, Haifa, Israel

Let the random variable $Z_{n, k}$ denote the number of increasing subsequences of length k in a random permutation from S_{n}, the symmetric group of permutations of $\{1, \ldots, n\}$. We show that the weak law of large numbers holds for $Z_{n, k_{n}}$ if $k_{n}=o\left(n^{\frac{2}{5}}\right)$; that is,

$$
\lim _{n \rightarrow \infty} \frac{Z_{n, k_{n}}}{E Z_{n, k_{n}}}=1 \text { in probability. }
$$

The proof uses the second moment method and demonstrates that this method cannot work if the condition $k_{n}=o\left(n^{\frac{2}{5}}\right)$ does not hold. It follows from results concerning the longest increasing subsequence of a random permutation that the law of large numbers cannot hold for $Z_{n, k_{n}}$ if $k_{n} \geq c n^{\frac{1}{2}}$, with $c>2$. Presumably there is a critical exponent l_{0} such that the law of large numbers holds if $k_{n}=O\left(n^{l}\right)$, with $l<l_{0}$, and does not hold if $\lim \sup _{n \rightarrow \infty} \frac{k_{n}}{n^{l}}>0$, for some $l>l_{0}$. Several phase transitions concerning increasing subsequences occur at $l=\frac{1}{2}$, and these would suggest that $l_{0}=\frac{1}{2}$. However, we show that the law of large numbers fails for $Z_{n, k_{n}}$ if $\lim \sup _{n \rightarrow \infty} \frac{k_{n}}{n^{\frac{4}{9}}}=\infty$. Thus the critical exponent, if it exists, must satisfy $l_{0} \in\left[\frac{2}{5}, \frac{4}{9}\right]$. To show that the the law of large numbers fails, we use a celebrated result by Baik, Deift and Johansson (1999) concerning the length of the longest increasing subsequence in a random permutation, as well as the following result, which is of independent interest: Place n cards numbered from 1 to n on a line in increasing order from left to right. Randomly designate k_{n} of the cards. Pick up the $n-k_{n}$ other cards and randomly reinsert them between the k_{n} designated cards that remained on the line. Denote the resulting measure on S_{n} by $\mu_{n ; k_{n}}$, and denote the uniform measure on S_{n} by U_{n}. Then the law of large numbers holds for $Z_{n ; k_{n}}$ if and only if the distance between U_{n} and $\mu_{n, k_{n}}$ converges to 0 in the total variation norm as $n \rightarrow \infty$.

