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Problem Statement

Suppose that a biological agent (for example, anthrax) is re-
leased in a closed environment such as an office building. What
types of (statistical) spatial sampling procedures might we use
in decontaminating the building?

• This problem is similar to that of choosing a spatial sampling
design in the removal of hazardous materials in environmental
statistics

• As in environmental statistics, we might consider adaptive and
multiphase sampling

• For now, we have decided to concentrate on the application of
adaptive sampling procedures
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Statistical Approaches to Adaptive Spatial Inference

• Design based - the building is “subdivided” in some natural or

geometrically convenient way (e.g., rooms, offices, work-areas,

a three-dimensional grid, etc.) into subunits to create a finite

population from which samples are drawn in accordance with a

probability structure chosen by the sampler. (Inference based on

structure chosen.)

• Model based - utilizes parametric stochastic models for which

the parameters are to be estimated. Then, given a location

vector s, the value of the spatial variable at s is predicted; or a

functional of the spatial process is predicted

• a mixture of the design and model based approaches
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Design Based Sampling Procedures for Handling
Microparticles - 1

• Provide for mathematically correct statistical inferences; esti-
mators with smaller variances than would be obtained with tra-
ditional sampling procedures

• Are likely to result in significant improvements in the proportion
of sample units captured that contain lethal concentrations of a
pathogen or contaminant

• Take advantage of statistical information about particle (spore)
distribution that becomes available either before or after the
selection of an initial sample (makes it adaptive)

• Are compatible with well-established field practices in current
use for contaminant removal
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Design Based Sampling Procedures for Handling
Microparticles - 2

Lessons learned from computer simulation studies and scien-
tific/engineering literature reviews:

• Allow for direct use of the location of point sources when these
are known

• Control the spread of the initial sample through extensive strat-
ification (or, in the language of environmental sampling, the cre-
ation of large “remediation” units)

• Provide for the direct use of the physics of interzone airflow
and contaminant transport in the linking of sampling units (likely
to be very important in large building problems)
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Characteristics of Bacillus Anthracis Contamination Relevant
in Adaptive Sampling

• Anthrax, caused by this bacterium, has the ability to produce
spores which behave like microparticles

• Spores can produce active bacteria when they come into con-
tact with animals or humans

• In a closed (indoor) environment (like a building), a ventilation
system, ordinary foot traffic or inter-office mail distribution can
disperse spores into areas adjacent to a point source where an
initial release occurred

• Spores/contaminants can collect on surfaces (desk tops, ta-
bles, file cabinets) and can re-aerosolize to further penetrate a
work environment
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Example: An Adaptive Sampling Procedure

• Assume we are going to draw a sample of 2k units, where k is
a positive integer

• Form k strata and select two units with arbitrary probabilities
without replacement in each stratum

• If a sample unit is found to contain a lethal concentration
of spores, add units that share a common boundary with it to
the sample; for each of those units, add units adjacent to them
when they too contain a lethal concentration of spores, and so
forth, until no further units can be added to the sample (linking
mechanism). [Note that there are two ways in which a sample
unit can enter the final sample: (1) it can be drawn in the initial
sample; (2) it is adjacent to a unit that contains a lethal spore
count.]
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Example continued

In the final sample, retain only those units that were in the initial

sample or that were added and contained a lethal concentration

of spores. If unit j is a member of the final sample, let mj

denote the number of retained units to which it is linked in the

final sample and let Aj denote the set of those units. (Given

distinct units i and j in the final sample, note that if unit i is in

Aj, then j belongs to Ai also. Further, we can have j in Aj but

Aj \ {j} can be empty, [that is, the set Aj can contain only unit

j] in which case we adopt the convention that mj is one even if

that unit did not contain a lethal spore count.)
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Example continued

• Define the variable wj for unit j by

wj =
∑

i in Aj

yi

mi

• If units i and j are members of the initial sample drawn from

the same stratum with inclusion probabilities πi and πj, then

when drawing two units per stratum,

wi

πi
+

wj

πj

is the contribution from the stratum to the population total

under the adaptive scheme and the estimator for the total is the

sum of terms of this form, one for each stratum.
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The variance of this estimator is estimated by the sum of the

terms of the following form for each stratum:

πiπj − πij

πij

(
wi

πi
− wj

πj

)2

where

πij =
πiνj + πjνi

2 +
∑N

i=1 νi
,

N is the number of units in the stratum and νi
def
= πi

1−πi
.
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Example: Some Quantities That Might Be of Interest

Let

yi =





1, if unit i contains a
lethal spore concentration

0, otherwise

and define variables

w1j =
∑

i in Aj

yi

w2j =
∑

i in Aj

yi

mi

w3j =
∑

i in Aj

yi

mi
2
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Some Quantities That Might Be of Interest continued

If, for k = 1,2,3

τ̂k =
n∑

j=1

wkj

πj
,

where the summation is over j in the original sample, then τ̂1 is an

estimator of the total of the sizes of the networks linked to units

containing lethal spore concentrations, τ̂2 is an estimator of the

number of units containing lethal counts and τ̂3 is an estimator

of the number of networks composed of units containing lethal

spore concentrations. Also, τ̂1/τ̂2 is an estimator of the average

network size for units containing lethal spore counts.
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Some Quantities That Might Be of Interest continued

Finally, if we redefine yi to be

yi =





spore count, when the unit contains
a lethal count of spores

0, otherwise

and put

w4j =
∑

i in Aj

yi

mi
,

then τ̂4 =
∑n

j=1
w4j
πj

is an estimator of the total spore count in

units containing lethal concentrations of spores and τ̂4/τ̂2 is an

estimator of the average number of spores in units containing

lethal counts. Also, τ̂4/τ̂3 is a similar average over networks.
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A Few (Transitional) Comments

• Use of the “proximity” of units to link them may be very
effective in situations where there is little or no information
concerning where to look next

• Better choices of “linked” units may be made when there is
explicit knowledge of the dynamics of airflows and particle
transport mechanisms of the environment under study as
could be determined through CFD studies

• Some studies have posited approximately 70% of particle
transport through airflow and 30% as a result of tracking,
resuspension and redeposition
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Computational Fluid Dynamics (CFD)

FOCUS: mathematical (deterministic) models of airflow and
particle transport

• CFD is quantitatively predicting what will happen when fluids
(such as air, water, etc.) flow, with such complications as mass
transfer and mechanical movement. (Provided by Concentration
Heat and Momentum, Ltd. – a British software development
firm)

• CFD is the process of modeling fluid flows by numerically solv-
ing the governing partial differential equations or other mathe-
matical equations of motion. (CSIRO)

Both of these definitions capture relevant aspects of our appli-
cation of CFD
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A Few Points to Note on Building
Interior Flow and Transport Models

• CFD models for buildings have been a scientific research topic
since at least 1960

• Up to 1996, one emphasis for buildings appeared to be on devel-
oping accurate information on airflow patterns and rates for pro-
viding good indoor air quality and calculating space-conditioning
loads

• Since 1996, DoE has supported a multi-laboratory effort to
improve response to terrorist attack through its Chemical and
Biological Nonproliferation Program. We are interested in the
mathematical models that have been developed for predicting
what happens to gases and particles as they travel through build-
ings, subways and urban areas
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A Few Points to Note on Building

Interior Flow and Transport Models continued

• Up to now, much analysis for buildings has relied upon lumped-

parameter models instead of models based on “first principles”

approaches to fluid dynamics because of the extremely high com-

putational demands of fluid dynamics models

• Many of the lumped-parameter models in current use are of

the multizone (MZ) type. These models describe a building as a

collection of well-mixed spaces (or zones) connected by discrete

flow paths. A zone may, for example, correspond to a single

room, a portion of a room or several well-coupled rooms. Using

zones, most buildings have been characterized as MZ structures
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even when no internal partitions have been present (e.g., postal

facility processing centers, airplane hangers)

• Different from the MZ idea is the control-volume method of

CFD which is under detailed study at NIOSH. This method in-

volves division of the physical space into a large number of dis-

crete control volumes called cells. The Navier-Stokes equations

that govern fluid motion are then integrated over each control

volume to form simplified algebraic equations
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General Form of Governing Equations

Following S.V. Patankar, Numerical Heat Transfer and Fluid

Flow (p.15), the momentum, energy and mass conservation

equations all obey a differential equation of the form

∂

∂t
(ρφ) + div(ρ

⇀
v φ) = div(Γφ∇φ) + Sφ ,

where φ is a general scalar function, ρ denotes fluid density,
⇀
v is

the velocity vector, Sφ denotes the source of φ per unit volume

and Γφ is the diffusion coefficient for φ.

If dV denotes the infinitesimal for volume and d
⇀
A is the surface

infinitesimal multiplied by the unit vector normal to the surface,

then, integrating this differential equation on both sides over the
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cell volume and applying the divergence theorem of Gauss, yields

the steady-state conservation equation
∫

A
ρ
⇀
v φ · d

⇀
A =

∫

A
Γφ∇φ · d

⇀
A +

∫

V
SφdV .

The discrete form of the last equation is then just

Nfaces∑

f

vfφfAf =

Nfaces∑

f

Γφ(∇φ)nAf + SφV ,

where f is the cell face index, Nfaces is the number of faces

enclosing cell, φf is the value of φ convected through face f ,

vf is the mass flux through f , Af is area of face f , (∇φ)n is

the magnitude of ∇φ projected on the normal to f and V is cell

volume.
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Remarks on Model Equations

• Solving these equations using numerical methods will give us,

for example, tracer gas concentration values at each point (cen-

troid) of a three-dimensional grid for a ventilation chamber.

• Hence, given the opportunity to conduct physical experiments

with a ventilation chamber, we can compare the experimentally

measured concentration values with those obtained by solving

the applicable system of equations and, thereby, validate a CFD

model.
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Verification and Validation

• Verification: the process of determining that a model imple-

mentation accurately represents the developer’s conceptual de-

scription of the model

• Validation: the process of determining the degree to which a

model is an accurate representation of the real world from the

perspective of the intended uses of the model

( Definitions supplied by the American Institute of Aeronautics

and Astronautics)

Next, we consider statistical methods for application in model

validation.
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Strategies and Spatio-Temporal Analysis Procedures
for CFD Model Validation

• Needed: A parametric description (model) of the universe of
ventilation chamber scenarios that we expect to encounter

One possible objective: estimate the parameters of that
model from a representative sample since it is impossible
to examine the entire universe

• A general statistical model for CFD model validation:

Let t denote a member of the space-time index set for an
observable variable Y (t) so that t denotes three coordi-
nates of location and time. Assume that the coordinates
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of t are integer-valued. We might consider the general

model to be

Y (t) = S(t) + ε(t),

where S(t) is a “signal” process representing tracer-gas

concentration values associated with index set coordi-

nates t and ε(t) denotes an error process which, under a

null hypothesis, we might assume to be wide-sense sta-

tionary and have a zero mean vector. We might also

assume that ε(t) is a Gaussian process with some spec-

tral density matrix.
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A First Model

• Suppose that we have chosen a finite number of locations, N ,

that we are going to keep fixed throughout the analysis. In this

case, we assume that our observations can be described by the

basic model

Y (t) = S(t) + ε(t) t = 0,±1,±2, . . .

where Y (t) is an N-vector of observed values, S(t) now represents

an N-vector of tracer-gas concentration field values and ε(t) is an

N-dimensional wide-sense zero mean stationary Gaussian process

with N ×N spectral density matrix f(λ).

• From the CFD model, S(t) = S0(t), the numerical solution of

the system of equations describing airflow in the chamber.
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Thus, one statistical formulation of the validation problem entails

testing the hypothesis H: S(t) = S0(t).

• The N locations have been carefully chosen to challenge the

validity of H on the basis of engineering experience with the

phenomenon under study and extensive experimentation in the

ventilation chamber

• To test H, one might employ discrete Fourier transforms (DFTs)

and consider the dual testing problem in the frequency domain:

utilize the asymptotic independence of the transformed differ-

ences Y (t)− S0(t) under H to form a test statistic which, under

independence, has a known multivariate distribution
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Some Points to Note

• The parts of the experimental design that are related to num-
bers of locations and time points for observation could benefit
from a judicious application of appropriate sampling theorems

• One should be prepared to apply statistical procedures to fur-
ther analyze the experimental data if H is rejected. For this
purpose, provision should be made to produce enough data to
estimate bispectra and trispectra (i.e., higher-order spectra) for
the investigation of nonGaussianity, nonlinearity or nonstation-
arity

• Since ventilation chambers have finite extent, there may be
edge effects at boundaries/walls which present problems that
must be taken into account
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Some Points to Note continued

• Statistical tests can be designed which exploit the properties of

HOS and the properties of the equations governing fluid motion

in various situations

• Note that the formulation of the PDEs of CFD used here have

the property that the highest order derivatives occur linearly;

hence, they constitute a quasi-linear system, which suggests that

we might want to test for linearity in the error process at some

point

• We have assumed Gaussianity of the error process so we might

also want to formulate this as an hypothesis to be tested
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Thoughts on A Test for Gaussianity:

Observations, Definitions and Items to Note

Let
⇀
X = (X1, X2, X3, X4)

′ be a zero-mean Gaussian r.v. with

covariance matrix Σ = {σjk : j, k = 1,2,3,4}. Since the c.f.

for
⇀
X is ΦX(

⇀
t ) = exp{−1

2

⇀
t
′
Σ

⇀
t } where

⇀
t = (t1, t2, t3, t4)

′, if

ı =
√−1, it may be seen that

E(X1X2X3) = (−ı)3
∂3ΦX(

⇀
t )

∂t1∂t2∂t3

∣∣∣∣∣∣⇀
t =0

= 0

and

E(X1X2X3X4) = (−ı)4
∂4ΦX(

⇀
t )

∂t1∂t2∂t3∂t4

∣∣∣∣∣∣⇀
t =0

= σ23σ14 + σ13σ24 + σ12σ34
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Thoughts on A Test for Gaussianity:

Observations, Definitions and Items to Note continued

Next, let S = {1,2, . . . , k} be a set of positive integers and let

{Ip} be a collection of nonempty disjoint subsets of S whose

union is S. (The collection {Ip} is called a partition of S.) If q

is the number of elements in the collection {Ip}, the k-th order

cumulant for
⇀
X

k×1
is given by the expression

cum(X1, . . . , Xk) =
∑

(−1)q−1 (q − 1)!
q∏

p=1

m ⇀
X
(Ip) ,

where the summation extends over all the partitions of S and

m ⇀
X
(Ip) = E(

∏
jεIp Xj). Using what we already know when k =

4, it may now readily be seen that the third and fourth order

cumulants of a zero-mean Gaussian r.v. are both zero.
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Thoughts on A Test for Gaussianity:

Observations, Definitions and Items to Note continued

Now suppose that X(t) is a one-dimensional discrete-time sta-

tionary time series and let {τj}k−1
j=1 be a set of displacements

from t. Since the time series is stationary, the cumulants are

only functions of the τj and not t; that is, fixing the τj, the k-th

order cumulant

cum(X(t), X(t + τ1), . . . , X(t + τk−1) = Ck,X(τ1, τ2, . . . , τk−1)

for all t. If, further, {Ck,X(τ1, τ2, . . . , τk−1)|for j = 1,2, . . . , k −
1 and τj = 0,±1,±2, . . .} are absolutely summable, we can form
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Thoughts on A Test for Gaussianity:

Observations, Definitions and Items to Note continued

the discrete-time Fourier transform of the k-th order cumulants

Sk,X(λ1, λ2, . . . , λk−1) =
∑

|τ1|<∞,...,|τk−1|<∞
Ck,X(τ1, τ2, . . . , τk−1)

× exp[−ı
k−1∑

j=1

λjτj]

called the k-th order polyspectra for X(t). When k = 3, Sk,X(·)
is known as the bispectrum and when k = 4, Sk,X(·) is called the

trispectrum.

Since the bispectrum is zero for a zero-mean stationary Gaussian

process, it might seem reasonable to anticipate that a test for
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Thoughts on A Test for Gaussianity:

Observations, Definitions and Items to Note continued

Gaussianity can be based solely on how “close” the bispectrum is

to zero. However, something more may be needed. From what

we have already observed, the CX,3(τ1, τ2) and CX,4(τ1, τ2, τ4)

are all equal to zero when X(t) is zero-mean Gaussian but for

a zero-mean double-exponential, logistic or uniform distribution,

CX,3(0,0) = 0 while CX,4(0,0,0) 6= 0. This might be viewed as

an indication that a test for Gaussianity must be based on both

the bispectrum and the trispectrum.

32


