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ABSTRACT: This paper begins by using the Haar wavelet to analyze the cu-

mulative distribution function of a stream of two-valued Bernoulli trials. We

find that this function maps binary numbers in [0,1] into non-uniform binary

numbers in [0,1]. More generally, for r-valued Bernoulli trials, the distribution

function likewise maps usual base-r numbers into non-uniform base-r numbers.

We also find this distribution function obeys a two-scale dilation equation and

can be used to construct a family of wavelets. This family contains the Haar

wavelet and the piecewise-linear wavelet as special cases.

1. Introduction: the distribution of Bernoulli sequences

Consider a sequence B1B2B3 · · · of Bernoulli trials, a stream of independent, identically
distributed random variables, each taking one of only two values. For j = 1, 2, 3, · · ·, let Bj =
0 with probability p ≥ 0, and Bj = 1 with probability q = 1−p. This is a model of repeated
tosses of a biased coin, for example. Let us represent a Bernoulli sequence B1B2B3 · · · by
the random binary number X = .B1B2B3 · · · in [0,1]; that is, X =

∑
j

1
2jBj . The Bj now

serve as random bits. (In mapping Bernoulli sequences onto [0, 1], we identify those pairs
of sequences that begin with the same J bits, but end in 0111 · · · and 1000 · · ·, respectively.
The set of such pairs is countable with Lebesgue measure 0 [3].) Accordingly, we say that
X has a meta-binomial or Bernoulli-trials distribution. (The binomial distribution of the

random integer
∑J

j=1 Bj is not used in this paper, but is also named for James Bernoulli.)

If we limit X to J bits, then for k = 0, ..., 2J − 1, X takes the values .k if we express k
in base 2. For example, for J = 2, X takes the values .00, .01, .10, .11. So X takes the value
.k with probability

πJ,k = Prob(X = .k = .b1b2 · · · bJ)

= p1p2 · · · pJ ,

where pj = p whenever bj = 0, and pj = q whenever bj = 1. We define π0,0 = 1. For
J = 2, we have the discrete probabilities π2,00 = pp = p2, π2,01 = pq, π2,10 = qp, and

π2,11 = qq = q2. Thus X (with J bits) has a cumulative distribution function F̃J(x) of scale
J given by

F̃J (x) =
∑

.k≤x

πJ,k. (1)

This function is continuous from the left. Example graphs of F̃1, F̃2, F̃3 are shown in Figure
1.

These distribution functions become easier to work with if we translate them to the
right by one unit of length at scale J . We define the unit-translates FJ as

FJ (x) = F̃J

(
x− 1

2J

)
. (2)

Example graphs of F1, F2, F3 are shown in Figure 2. Over each dyadic subinterval at scale
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Figure 1: (a,b,c) The distribution functions eFJ for p = 1/4, J = 1, 2, 3 and (d) their limit F as J → ∞.
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Figure 2: (a,b,c) The unit-translated distribution functions FJ for p = 1/4, J = 1, 2, 3 and (d) their limit
F as J → ∞.

J , the functions FJ (x) increase or stay the same as J increases, while the original distribution

functions F̃J(x) decrease or stay the same. (FJ (x) accretes, F̃J (x) erodes.) However, as J

increases, FJ behaves much more simply than F̃J . FJ is a refinement of FJ−1. The graph
of FJ inherits all jump points of FJ−1, and between them interpolates an equal number of
new ones (see Figure 2abc):

Lemma 1. For every scale-(J − 1) dyadic rational x ∈ [0, 1], FJ (x) = FJ−1(x).

Proof. Using the definition of FJ and translation by a unit u = 2−J at scale J , we
have the two partial sums FJ−1(x) =

∑
.k≤x−2u πJ−1,k =

∑
.k+2u≤x πJ−1,k and FJ (x) =∑

.k′≤x−u πJ,k′ =
∑

.k′+u≤x πJ,k′ . In the sum for FJ−1, at scale J − 1, each dyadic rational
atom .k = .b1b2 . . . bJ−1, with probability mass πJ−1,k, is translated to .k+2u, and included
in the sum if less than or equal to x. This atom splits into two atoms at scale J , .k =
.b1b2 . . . bJ−10 and .k+u = .b1b2 . . . bJ−11, with probability masses πJ−1,k · p and πJ−1,k · q,
respectively, which give a total mass πJ−1,k for the pair of atoms. These atoms are translated
by u in the sum for FJ to .k + u and .k + 2u, respectively; note that the second scale-J
atom lies exactly where the scale-(J − 1) atom is, and the first scale-J atom lies one unit
to their left. Therefore, each mass in the sum for FJ−1 (from .k = 0 through .k = x) is
exactly replaced by the pair of masses in the sum for FJ , and the two sums are equal. (For
example, for J = 2 with unit u = 1

4 = .01, the scale-1 atom at .0 + 2u = .1 has mass p, and
the scale-2 atoms at .0+u = .01 and .0+2u = .10 have masses p2 and pq, and p2 + pq = p).
�

Though F̃J introduces as many new jump points as FJ does when we change from scale
J−1 to J , the old jump points of F̃J−1 do not remain fixed, but all shift to the right by one
unit of length (2−J) at scale J (see Figure 1abc). Once introduced, each jump point moves
horizontally by half of the previous step, like the runner in Xeno’s paradox [4]. In the limit

as J → ∞, each new jump point of F̃J will reach the corresponding stationary jump point
of FJ . As J → ∞, we have FJ (x) ↑ F (x), since FJ+1(x) − FJ(x) ≤ pqJ for p ≤ q, or qpJ
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Figure 3: The Bernoulli-sequence distribution function F : as a function of x for various values of p (left
side); as a function of p for x = k/256, k = 0, . . . , 255 (right side). On the right, note that F0(p) ≡ 0,F1(p) ≡
1, F 1

2

(p) = p. Also note the bundling or non-uniformity of the curves on the right.

for q ≤ p. Similarly, F̃J (x) ↓ F̃ (x). Continuity of both limit functions is easily verified; this

implies that F̃ (x) = F (x) since the two limits coincide at every dyadic rational x.

Partitioning the area above F̃J(x) and below 1 into the horizontal rectangles to the left
of each jump in the graphs in Figure 1 [2], we easily verify that XJ has average value

E(XJ ) =
∑

.kπJ,k =

∫ ∞

0

(1 − F̃J (x))dx = 1 −
∫ 1

0

F̃J (x)dx

=
2J − 1

2J
q. (3)

Since FJ is the cumulative distribution function of YJ = XJ + 2−J , E(YJ ) = q + 2−Jp. We
also observe that

FJ+1(x) =

{
pFJ(2x) when x < 1

2 ,
p+ qFJ (2x− 1) when x ≥ 1

2 .
(4)

F̃J satisfies this same recursion.

For p = q = 1
2 , F (x) = x for all x ∈ [0, 1], the uniform distribution function. Otherwise,

F (x) is known to be singular; that is, F ′(x) = 0 except on a set of measure 0, those x’s
whose bit average is not p. Also F (x) increases as x goes from 0 to 1 [2]. Sometimes we
label F with its parameter p, as Fp. For x = 1

2 , Fp(1/2) = p for all p ∈ [0, 1]. Plots of Fp(x)
as a function of x and as a function of p are given in Figure 3. From (3), we have E(X) = q

and
∫ 1

0
F (x)dx = p. F (x) is self-similar (fractal), since from (4),

F (x) =

{
pF (2x) when x < 1

2 ,
p+ qF (2x− 1) when x ≥ 1

2 .
(5)

The distribution F (x) also appears as the probability of winning a game of bold bets on
Bernoulli trials, beginning with an amount of money x ∈ [0, 1]; the game stops when x = 0
(loss) or x = 1 (win) [2].
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2. The Bernoulli-trials distribution as viewed by a Haar wavelet basis

Since F̃J is a staircase function of scale J supported on [0, 1], it has an expansion in the
orthonormal Haar wavelet basis on [0, 1),

F̃J(x) = 〈F̃J , p0,0〉p0,0(x) +

J−1∑

j=0

2j−1∑

k=0

〈F̃J , hj,k〉hj,k(x), (6)

where p0,0 = χ[0,1) is the Haar scaling function, h0,0 = χ[0, 1
2
) − χ[ 1

2
,1) is the Haar wavelet,

with its dilated and translated copies given by hj,k(x) = 2
j

2h0,0(2
jx−k) for k = 0, 1, . . . 2j−1

[1]. We always have F̃J (1) = 1, so we do not need an expansion for the endpoint x = 1.

Theorem 2. For every x ∈ [0, 1),

F̃J (x) = α0,0p0,0(x) +

J−1∑

j=0

2j−1∑

k=0

βj,khj,k(x), (7)

where for j = 0 : J − 1

α
(J)
0,0 = p+

1

2J
q,

β
(J)
j,k = −

(
1

2J−
j
2

q +
2J−j−1 − 1

2J−
j
2
−1

pq

)
· πj,k.

Proof. By induction on J . For J = 1, we have α
(1)
0,0 = 〈F̃1, p0,0〉 = 1

2p + 1
2 = p + 1

2q.

Likewise, β
(1)
0,0 = 〈F̃1, hj,k〉 = 1

2p− 1
2 = − 1

2q. Assume the coefficients are correct as given for
scale J . Then using (4), we have

α
(J+1)
0,0 = 〈F̃J+1, p0,0〉

=
1

2
p · 〈F̃J , p0,0〉 +

1

2
p+

1

2
q · 〈F̃J , p0,0〉

=
1

2
p+

1

2

(
p+

1

2J
q

)
π0,0

= p+
1

2J+1
q,

β
(J+1)
0,0 = 〈F̃J+1, h0,0〉

=
1

2
p · 〈F̃J , p0,0〉 −

(
1

2
p+

1

2
q · 〈F̃J , p0,0〉

)

= −1

2
p+

1

2
(p− q)

(
p+

1

2J
q

)
π0,0

= −
(

1

2J+1p
+

2J − 1

2J

)
pq.

For j > 0 and k = 0, . . . , 2j−1 − 1, the induction step follows by using the top of (4) and
the fact that πj,k = pπj−1,k:

β
(J+1)
j,k = 〈F̃J+1, hj,k〉

=
1

2
p
√

2〈F̃J , hj−1,k〉 = 2−
1
2 pβ

(J)
j−1,k.
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For j > 0 and k′ = k + 2j−1 = 2j−1, . . . , 2j − 1, the induction step follows by using the
bottom of (4) and the fact that πj,k′ = qπj−1,k:

β
(J+1)
j,k′ = 〈F̃J+1, hj,k′〉

=
1

2
q
√

2〈F̃J , hj−1,k〉 = 2−
1
2 qβ

(J)
j−1,k. �

Taking the right and left hand limits as J → ∞ in Theorem 1, we immediately find

Corollary 3.

F (x) = p · p0,0(x) +

∞∑

j=0

2j−1∑

k=0

−pqπj,k · 2− j

2hj,k(x). (8)

Now 2−
j
2 hj,k(x) is just the wavelet supported on the half-open interval Ij,k =

[2−jk, 2−j(k+1)) with amplitude ±1. Imagine the vertical line through a fixed value x. For
each scale j, it slices through the Haar wavelet with support over the Ij,k which contains x.
At scale j, we keep only that k in the inside sum in (8). This will not change the sum for this
x value. Indeed, if we express x = .b1b2b3 · · · in binary form, for scale j, kx,j = b1b2 · · · bj
is just x truncated to j bits. The corresponding probability πj,k = p1p2 · · · pj also follows
the pattern of the bit sequence of x, since we have ve defined pi = p if bi = 0 and pi = q if
bi = 1. As the scale increases from j − 1 to j, we go to the left half-interval Iℓ

j,k if the last
bit bj is 0, and to the right half-interval Ir

j,k if it is 1. So the sign of the Haar wavelet hj,k

we keep at scale j will be +1 or -1, according as the next bit is 0 or 1, respectively. Thus
the Haar wavelet expansion (8) reduces to a closed-form series for F (x):

Corollary 4. Given x = .b1b2b3 · · ·,

F (x) = p− pq

∞∑

j=0

(−1)kx,j+1πj,kx,j

= p− pq

∞∑

j=0

(−1)bj+1p1p2 · · · pj. (9)

For example, if x = .010010 · · ·,

F (x) = p− pq (1 − p+ pq + pqp− pqpp+ pqppq ± pqppqp± · · ·) .

Since for p = 1
2 , Fp(x) = x for x ∈ [0, 1], Corollary 3 implies 1

2 − 1
4

∑∞

j=0(−1)bj+1(1
2 )j =∑∞

j=1 bj(
1
2 )j . There is a more general form of this identity:

Lemma 5. Given x = .b1b2b3 · · ·,

p

q

∞∑

j=1

bj · p1p2 · · · pj = p− pq

∞∑

j=0

(−1)bj+1p1p2 · · · pj. (10)

Proof. First we prove this for the case of dyadic rationals of scale J , x = .b1b2 · · · bJ . Here
J is the finite index of the last bj = 1; that is, when bj = 0 (and pj = p) for every j > J .
For J = 1, the left side is 0 if b1 = 0, and p

q · q = p if b1 = 1. (If q = 0, we define q/q = 1.)

The right side is p − pq
(
(−1)b1 + p1 · (1 + p+ p2 + · · ·)

)
= p − pq

(
(−1)b1 + p1 · 1

q

)
. This

also reduces to 0 or p, for b1 = 0 or 1, respectively.

Now assume the identity true when the last 1-bit occurs at index J . When the (J+1)st
bit bJ+1 changes from 0 to 1, the left-hand sum increases by the new term ℓJ = p · p1 · · · pJ .

The sum of terms on the right-hand side changes by −pq ·
(
p1 · · · pJq · 1

q − p1 · · · pJ

)
− pq ·

5



(
p1 · · · pJ · 1

q

)
= −pq ·

(
0 − p1 · · · pJ · 1

q

)
= p1 · · · pJp. This completes the induction step.

Since the identity holds for every J ≥ 1, it is clear that it also holds in the limit as the series
converge. �

Lemma 5 lends new meaning to Corollary 4, which can now be expressed as

Theorem 6. Given x = .b1b2b3 · · ·,

F (x) =
p

q

∞∑

j=1

bjp1p2 · · · pj . (11)

We can regard the right-hand series as a p-binary representation of the number y =
Fp(x), and write it as (.b1b2b3 · · ·)p. The usual binary representation of x is (.b1b2b3 · · ·) 1

2
.

The meaning of Fp now becomes clear. The map Fp is one-to-one, and takes x = (.b1b2b3 · · ·) 1
2

to y = (.b1b2b3 · · ·)p. The p-binary representation (11) of a number x is an infinite polyno-
mial or power series when considered as a function of the variables p and q. Each bit is the
coefficient of a product of a sequence of p’s and q’s that encodes the history of the preceding
bits as well. This product can be regarded as the signature or pedigree of the bit. The usual
case p = 1

2 is a degenerate case, in which the bit coefficient 1
2j is fixed and carries no implicit

history of the bits before it. Just as the usual binary expansion is said to be for base 2, so
also we may think of this as a twin Hölder base with 1

a + 1
b = 1, a = 1/p ≥ 1. Note that

Fq(x) = 1 − Fp(1 − x). To find Fp(x), one must have x in binary form. Likewise, to find

F−1
p (y), one only needs to digitize y. We can digitize a real number y in the base

(
1
p ,

1
q

)

in the same manner that we find the bits of a number x base 2; but we will not detail this
here.

Since F (x) equals FJ (x) for dyadic rationals x of scale J , we see that the partial sums
on both sides of (10) in Lemma 4 are actually the expansions for FJ(x) (not F̃J (x)):

Theorem 7. Given x = .b1b2b3 . . . bJ ,

FJ(x) =

J∑

j=1

p1p2 · · · pj−1Pj (12)

=
p

q

J∑

j=1

bjp1p2 · · · pj , (13)

where we define Pj = 0 if bj = 0, and Pj = p if bj = 1.

Proof. By induction: the equality (12) for J = 1 is easily verified (the empty product
p1 · · · pj−1 for j = 1 is always defined as 1). Assume the equality holds for J − 1 > 0, and
let x = .k = .b1b2b3 . . . bJ−1bJ = .k′bJ = x′ + bJu, where u = 2−J is again the scale-J unit,
and x′ = .k′ is a scale-(J − 1) dyadic rational number formed by the first J − 1 bits of x.
If bJ = 0, x = x′ and the left side of (12) is FJ(x) = FJ(x′) = FJ−1(x

′) by Lemma 1; the
right side clearly reduces to the scale-(J − 1) expression for x′ as well. If bJ = 1, this bit
increases each side above its scale-(J−1) expression by just one term: since FJ = F̃J(x−u),
FJ (x) = FJ (x′) + πJ,k′0 = FJ−1(x

′) + πJ,k′0, where the increase is πJ,k′0 = p1p2 · · · pj−1 · p.
But evidently the right side is also the sum for scale J − 1 increased by this same term.
In both cases, then, equality of both sides of (12) holds by the induction hypothesis. The
expression (13) now follows by noting that by definition Pj = p

q pj · bj, where we take q
q = 1

even when q = 0. �

Remark: The sum for FJ(x) based on (1) has on average 2J/2 terms, while the right side
of equality (12) reduces this to only J terms. The proof only depends on Lemma 1. Thus,
having seen the relation (12) by means of the Haar expansion, we could begin anew with
this relation and forget how we originally saw it. In Section 4, we will do this when we come
to generalize this relation.
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We can reexpress identity (4) as

F
(

1
2x

)
= pF (x)

F
(

1
2x+ 1

2

)
= p+ qF (x), (14)

for every x ∈ [0, 1]. Theorem 6 makes it easy to generalize that identity to this:

Corollary 8. Given x ∈ [0, 1] and 0 ≤ k ≤ 2j − 1. Then

F (2−j(x+ k)) = F (2−jk) + πj,kF (x). (15)

Proof. In usual binary terms, let x = .b1b2b3 · · ·, and k = k1k2 · · · kj . Then 2−jk ≤
1 − 2−j, and 2−jx ≤ 2−j . Therefore 2−jk + 2−jx = .k1k2 · · · kjb1b2b3 · · · and, by Theorem
5, Fp(2

−jk + 2−jx) = Fp(2
−jk) + πj,k(p, q)Fp(x). �

3. The Bernoulli-trials wavelet

The identity (4) looks like a two-scale dilation equation. Indeed, it can be rewritten as one
with only two coefficients p and q:

FJ+1(x) = pFJ (2x) + qFJ (2x− 1). (16)

Taking the limit as the number of bits J → ∞, we have a two-scale dilation equation

F (x) = pF (2x) + qF (2x− 1). (17)

Remark. It is remarkable that this two-scale relation arises naturally in the context of the
probability distribution of a random binary number. This goes to show that such two-scale
relations are not just a human contrivance.

To turn F (x) into a scaling function in L1(R), we proceed as in [1] for the piecewise-
linear case (p = 1

2 ) and define, for each integer J > 0,

GJ (x) = FJ

(
x+ 1

2

)
− FJ

(
x− 1

2

)
. (18)

This scaling function obeys a two-scale dilation equation with three coefficients,

GJ+1(x) = pGJ (2x+ 1) +GJ (2x) + qGJ (2x− 1) . (19)

Taking the Fourier transform of both sides gives us

ĜJ+1(γ) =
1

2

(
peiπγ + 1 + qe−iπγ

)
ĜJ (γ/2)

=
1

2

(
peiπγ + 1 + qe−iπγ

)
ĜJ (γ/2)

= m0(γ/2)ĜJ(γ/2), (20)

where

m0(γ) =
1

2

(
pei2πγ + 1 + qe−i2πγ

)

=
1

2

(
eiπγ + e−iπγ

) (
peiπγ + qe−iπγ

)

= cosπγ
(
peiπγ + qe−iπγ

)
.

(21)
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Now we apply the two-scale relation (20) over and over and take the limit as J → ∞ to get

Ĝ(γ) =
∞∏

j=0

m0(γ/2
j)

=

∞∏

j=1

cos(πγ/2j) ·
∞∏

j=1

(
peiπγ/2j

+ qe−iπγ/2j
)

= sinc(πγ) · incp(πγ), (22)

where we use the identity [2] [1]

sinc(πγ) =

∞∏

j=1

cos(πγ/2j), (23)

for sinc(α) = sinα/α, and we also define

incp(πγ) =
∞∏

j=1

(
peiπγ/2j

+ qe−iπγ/2j
)
. (24)

−8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

1

γ

in
c(

π
γ)

Figure 4: Graph of inc 1
4

. The real part is even (blue), the imaginary part is odd (red).

Let us pause to examine this incp function before going on. Figure 4 shows inc 1
4

as

an example. For p = 1
2 , inc 1

2
(πγ) = sinc(πγ), and for p = 0, 1, incp(πγ) = eπγ , e−πγ ,

respectively. Other expressions for incp are as follows:

incp(πγ) =

∞∏

j=1

(
cos(πγ/2j) + i(p− q) sin(πγ/2j)

)
(25)

=
∞∏

j=1

(
eiθj

√
1 − 4pq sin2(πγ/2j)

)
, (26)

8



where we put tan θj = (p − q) tan(πγ/2j). (Note that |p − q| =
√

(1 − 4pq).) Since these
angles just reverse sign if we exchange the roles of p and q, we see that incq = incp. From
now on, we will write incp without its subscript p.

Taking the inverse Fourier transform of (22), we have a convolution

G(x) = χ[−1,1](x) ∗ ∗©∞
j=1

(
−p · δ

(
x+ 1

2j

)
+ q · δ

(
x− 1

2j

))
. (27)

Here we see that the right-hand convolution is the inverse Fourier transform of incp and
generates a dense series of terms such as −pq ·δ

(
x− 1

2j + 1
2k

)
for j 6= k. The window χ[−1,1]

integrates these δ-terms as it moves from left to right, to give G.

Now we resume our wavelet development. The next step is to orthonormalize the
translates of G(x) to make it a true scaling function. We use the method of Lemma 7.7 [1]
to do this in the Fourier domain, and put

ϕ̂(γ) = Φ− 1
2 (γ) · Ĝ(γ), (28)

for the 1-periodization of
∣∣∣Ĝ(γ)

∣∣∣
2

,

Φ(γ) =
∑

n∈Z

∣∣∣Ĝ(γ + n)
∣∣∣
2

. (29)

We will verify below that Φ(γ) > 0. Then since Φ(γ) has period 1,
∑

n∈Z
|ϕ̂(γ + n)|2 =

Φ−2(γ) · ∑
n∈Z

∣∣∣Ĝ(γ + n)
∣∣∣
2

= 1. This condition is equivalent to orthonormality of the

translates ϕ(x − n), n ∈ Z by Lemma 7.4 [1]. By Exercise 7.11 in [1],

Φ(γ) =
∑

n∈Z

〈G(x), TnG(x)〉e−i2πγn, (30)

where the translation operator Tn is defined for any function f(x) by Tnf(x) = f(x− n).

In this case, the support of G(x) is [-1,1]. Define the translation coefficients by t
(J)
n =

〈GJ (x), TnGJ(x)〉. Clearly t
(J)
n = 0 except for n=-1,0,1. To find t−1, t0, t1, we observe that

t−1 = t̄1, and note they have recursive relations:

Lemma 9. For a=pq and a+b=1, and J > 0,

t
(J+1)
0 = bt

(J)
0 + t

(J)
1 (31)

2t
(J+1)
1 = at

(J)
0 + t

(J)
1 (32)

1 = t
(J)
0 + 2t

(J)
1 . (33)

Proof. This follows by induction on J from the original relations (4).

By Lemma 7, taking limits as J → ∞, we have

t0 = bt0 + t1

2t1 = at0 + t1

1 = t0 + 2t1.

The first two relations both reduce to t1 = at0. So we use the third relation to solve for
t0, t1 and find

t0 =
1

1 + 2pq
(34)

t1 =
pq

1 + 2pq
. (35)
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Therefore, we arrive at

Φ(γ) = t−1e
i2πγ + t0 + t1e

−i2πγ .

=
1

1 + 2pq
(1 + 2pq cos(2πγ)) . (36)

It is easy to verify that this Φ meets the frame condition (7.4) of [1]: Since pq = p(1−p) ≤ 1
4 ,

we have
1

3
≤ 1 − 2pq

1 + 2pq
≤ Φ(γ) ≤ 1 + 2pq

1 + 2pq
= 1. (37)

Thus, in the Fourier domain, we have the scaling function given by

ϕ̂(γ) =

√
1 + 2pq

1 + 2pq cos(2πγ)
· Ĝ(γ). (38)

The Fourier transform of the wavelet is now given by

ψ̂(γ) = m1(γ/2)ϕ̂(γ/2) (39)

= −e−iπγ · 1

2

(
1 − peiπγ − qe−iπγ

)
·
√

(1 − 2pq cos(πγ)) · (1 + 2pq)

(1 + 2pq cos(2πγ)) · (1 + 2pq cos(πγ))
· Ĝ(γ/2).

(40)

To compute the scaling function ϕ in the time domain, we express Φ− 1
2 (γ) as an inverse

Fourier series Φ− 1
2 (γ) =

∑
n c(n)ei2πγn. Then we have

ϕ(x) =
∑

n

c(n)G(x − n). (41)

Similarly, to compute the wavelet ψ, we express the function that multiplies Ĝ(γ/2) in (40)
as an inverse Fourier transform to obtain

ψ(x) =
∑

n

d(n)G(2x − n). (42)

Note that m0(0) = 1, and by using the last expression in (26), we readily verify that

|m0(γ)|2 + |m0(γ + 1
2 )|2 = cos2(πγ) ·

(
1 − 4pq sin2(πγ)

) (1 + 2pq cos(2πγ))

(1 + 2pq cos(4πγ))
(43)

+ sin2(πγ) ·
(
1 − 4pq cos2(πγ)

) (1 − 2pq cos(2πγ))

(1 + 2pq cos(4πγ))

= 1, (44)

for all values of γ. By Theorem 8.13 in [1], ϕ and ψ comprise an orthonormal multi-resolution
analysis (MRA).

Plots of ϕ and ψ and their associated functions are given for p = 1
4 in Figure (5). We

can see the spectrum ψ̂(γ) is near-zero in regular intervals, about the zeroes at γ = nπ

due to the factor sinc(πγ) that ψ̂ gets from Ĝ. This trait is most pronounced for p = 1
2 .

Plots of ϕ and ψ for various values of p are given in Figure (6). For p = 1
2 , we have the

piecewise-linear MRA. For p = 0, we have the Haar MRA. As p → 0, ϕ and ψ decay more
rapidly outside [−1, 1] until the support outside vanishes at p = 0. For p′ = 1 − p, ϕ and ψ
are the same as for p but reversed. So for p = 1, we have the reversed Haar functions.
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Figure 5: The Bernoulli scaling function ϕ(x) and wavelet ψ(x) and associated functions for p = 1

4
.

The real and imaginary parts of the Fourier transforms ϕ̂(γ) and ψ̂(γ) are plotted; the real parts are even
functions. For m0 and m1, amplitude and phase (argument) are plotted; the amplitudes are even.
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Figure 8: (a,b,c) The unit-translated distribution functions FJ for (p1, p2, p3) = ( 1
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), J = 1, 2, 3; and

(d) their limit F as J → ∞.

4. The general Bernoulli-trials distribution

In [2] , Patrick Billingsley treated the general case of the meta-multinomial distribution
F (x), for multi-valued independent Bernoulli trials. Each trial now has r possible outcomes,
k = 0, 1, 2, . . . , r − 1, with corresponding probabilities pk such that

∑
pk = 1. He showed

that, as for r = 2, this function is continuous and singular, with one exception: when
each trial has uniformly distributed outcomes (pk = 1

r ), the stream of trials is uniformly
distributed (F (x) = x).

Proceeding as for the binary case (r = 2), we restrict X to J ≥ 1 digits. Then for
k = 0, ..., rJ − 1, X takes the values .k if we express k in base r. For example, for r =
3, J = 2, X takes the values .00, .01, .02, .10, .11, .12, .20, .21, .22. So X takes the value .k
with probability

πJ,k = Prob(X = .k = .d1d2 · · ·dJ )

= pd1
pd2

· · · pdJ

The random variable X (with J digits), representing a finite Bernoulli stream of J r-valued

outcomes or symbols, has the cumulative distribution function F̃J (x) of scale J given by

F̃J (x) =
∑

.k≤x

πJ,k. (45)

These distribution functions for multi-valued Bernoulli trials again become easier to
use if we translate them to the right by one unit of length at scale J . We define the
unit-translates FJ as

FJ (x) = F̃J

(
x− r−J

)
. (46)

Example graphs of F̃J and FJ are shown in Figures 7 and 8 for three-valued trials (r = 3).
For r = 3 and p0 = p2 = 1

2 , p1 = 0, F (x) is the Cantor function [2] [6], shown in Figures 9
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Figure 10: (a,b,c) The unit-translated distribution functions FJ for (p1, p2, p3) = ( 1

2
, 0, 1

2
), J = 1, 2, 3;

and (d) their limit F as J → ∞. This is essentially the usual way of constructing the the Cantor function.

and 10. The Cantor function is usually constructed as the limit of a sequence of functions
equal to the unit-translated distribution functions FJ on the middle thirds of every scale-J
unit of length r−J . Over each middle third unit at scale J , FJ+n, n > 0 remains a constant
step of slope 0 that is never subdivided again. But the definition of FJ on the two outside
thirds of each unit is almost arbitrary [6], since at each change to the next finer scale, these
thirds are subdivided to insert a step at their middle thirds; and the union of middle thirds
(for all J) is readily seen to have measure 1.

FJ is still a refinement of FJ−1. The graph of FJ inherits all jump points of FJ−1, and
between them interpolates r new ones:

Lemma 10. For every scale-(J − 1) r-adic rational x ∈ [0, 1], FJ (x) = FJ−1(x).

Proof. Using the definition of FJ and translation by a unit u = r−J at scale J , we
have the two partial sums FJ−1(x) =

∑
.k≤x−ru πJ−1,k =

∑
.k+ru≤x πJ−1,k and FJ (x) =∑

.k′≤x−u πJ,k′ =
∑

.k′+u≤x πJ,k′ . In the sum for FJ−1, at scale J − 1, each r-adic rational
atom .k = .d1d2 . . . dJ−1, with probability mass πJ−1,k, is translated to .k+ru, and included
in the sum if less than or equal to x. This atom splits into r atoms at scale J , .k + du =
.d1d2 . . . dJ−1d, for d = 0, . . . , r − 1, with probability masses πJ−1,k · pd, respectively, which
sum to a total mass πJ−1,k for all of these atoms. These atoms are translated by u in the
sum for FJ to positions .k+(d+1)u; note that the final scale-J atom, at .k+ru, lies exactly
where the scale-(J − 1) atom is, and the preceding scale-J atoms lie to their left. Therefore,
each mass in the sum for FJ−1 (from .k = 0 through .k = x) is exactly replaced by the
corresponding r masses in the sum for FJ , and the two sums are equal. �

In general, F maps base-r numbers into (p0, . . . , pr−1)-base numbers in a way similar
to (11):
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Theorem 11. Given x = .d1d2d3 . . . dJ ,

FJ (x) =
J∑

j=1

pd1
pd2

· · · pdj−1
· Pdj

, (47)

where for any digit d we define Pd = 0 if d = 0, and Pd = (p1 + · · · + pd−1) if d > 0.

Proof. By induction: the equality (47) for J = 1 is easily verified for j = 1. Assume
the equality holds for J − 1 > 0, and let x = .k = .d1d2d3 . . . dJ−1dJ = .k′dJ = x′ + dJu,
where u = r−J is again the scale-J unit, and x′ = .k′ is a scale-(J − 1) r-adic rational
number formed by the first J − 1 digits of x. If dJ = 0, x = x′ and the left side of
(47) is FJ(x) = FJ (x′) = FJ−1(x

′) by Lemma 10; the right side clearly reduces to the
scale-(J − 1) expression for x′ as well. If dJ > 0, this digit increases each side above
its scale-(J − 1) expression by just a sum of dJ terms: since FJ = F̃J (x − u), FJ (x) =

FJ (x′)+
∑dJ−1

d=0 πJ,k′d = FJ−1(x
′)+

∑dJ−1
d=0 πJ,k′d, again by Lemma 10. This increase equals

πJ−1,k′ ·∑dJ−1
d=0 pd = pd1

pd2
· · · pdJ−1

·PdJ
, with PdJ

as defined. But evidently the right side
is also the sum for scale J − 1 increased by this same amount. In any case, then, equality
of both sides of (47) holds by the induction hypothesis. �

Taking the limit of FJ as J → ∞, we have

Theorem 12. Given x = .d1d2d3 · · ·,

F (x) =
∞∑

j=1

pd1
pd2

· · · pdj−1
· Pdj

. (48)

For r = 2, we recognize P0 = 0 and P1 = p = q · p
q in expression (11). For uniform

pk = 1
r , we have 1

pd
Pd = d, so that the jth term in (48) equals r−jdj as in the usual base-r

expansion of x ∈ [0, 1], and F (x) = x. Note that (48) is expressible as a nested (Horner)
expansion (cf. the index reversal mapping in [7], Section 2.2.3):

F (x) = Pd1
+ pd1

(Pd2
+ pd2

(Pd3
+ pd3

(· · ·))) . (49)

For uniform pk = 1
r , this becomes the usual Horner expansion to evaluate a polynomial of

one variable r−1:

F (x) = d0 + r−1
(
d1 + r−1

(
d2 + r−1 (· · ·)

))
, (50)

where we include the constant term d0 = 0.

5.0 Conclusion and Questions

The Haar wavelet was used to analyze the Bernoulli-trials distribution function, which is
known to be continuous, increasing, and singular for p 6= 1

2 [2] . This analysis revealed
that the function just maps usual binary numbers into p-binary numbers. (In a different
application to probability, integrals of Haar wavelets were used to synthesize continuous
Brownian motions, which are singular functions of time [5] [2] .) Since it happens to
obey a two-scale dilation equation, the Bernoulli trials distribution function could be used
to construct a new family of wavelets. The Bernoulli family includes the Haar wavelet
(p = 0, 1) and the piecewise-linear wavelet (p = 1

2 ) as special cases. (These are also the
B-spline wavelets of orders 0 and 1, respectively [1].) For intermediate values of p, we have
wavelets that offer more nearly compact support as p → 0, 1, or smoother approximation
(with wider periodic spectral gaps) as p→ 1

2 .

We also found that the multi-valued Bernoulli distribution function maps usual base-r
numbers into base-(p1, . . . , pr) numbers. The wavelet family given in Section 3 appears to
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belong to a much larger one. Dr. Billingsley also gave a base-r two-scale equation that is
equivalent to the two-scale dilation equation

F (x) =

r−1∑

k=0

pkF (rx − k).

From this equation, it should be possible to construct a wavelet family having r filter
coefficients, along a path similar to that for r = 2. For radix-r, the basis consists of
dilations and translations of a scaling function ϕ and (r − 1) mutually orthogonal wavelets
ψ1, . . . , ψr−1 [8]. This family for r = 3 would include a Cantor wavelet basis, given by a
scaling function and two wavelets.

That p-binary numbers are found in a natural setting and develop Bernoulli wavelets
stirs us to ask questions about arithmetic. First, is it possible to multiply or add p-binary
numbers, where each bit has a unique signature? Is there any computational benefit? Much
more broadly, can a wavelet (Bernoulli or otherwise) be used to represent real numbers and
to do arithmetic on the real line, possibly using the fast wavelet transform? The goal would
be to perform bit-level arithmetic operations with uniform precision regardless of scale. This
could serve to replace floating-point arithmetic, which loses precision as the scale (exponent)
increases.
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