3-Lecture Minicourse on Statistics of Survival Data

Eric Slud

- I. (11/6) **Death Hazards & Competing Risks** Concepts:
 - (i) Statistical Estimation as mathematical problem,
 - (ii) Identifiability, nonparametric vs. nonparametric.
- II. (11/13) **Population Cohorts & Martingales** *Concepts*:
 - (iii) Counting process models,
 - (iv) "Innovations" and Statistics.

III. (11/20) Models and Likelihoods with ∞ -Dimensional Parameters

Concepts:

- (v) Nuisance parameters,
- (vi) Asymptotic Relative Efficiency.

Lecture Slides (incl. annotated references) at : $\mathbf{www.math.umd.edu/}{\sim}\mathbf{evs/SurvSlid3.pdf}$

Parametric vs. Nonparametric Trade-off

Return to survival-data setting of the first lecture to focus the question of how much 'efficiency' is lost by **nonparametric** statistical estimation of survival probability.

Data: $T_i = \min(X_i, C_i), \ \Delta_i = I_{[X_i \leq C_i]}, \ Z_i, \ 1 \leq i \leq n$ event time, death-indicator, treatment-grp indicator

First Objective: estimation of $P(X_1 > t)$ including 95% Confidence Interval, under assumption either of indep. X_i , C_i or a more detailed parametric model.

Compare estimates based on popular parametric model

- Exponential which says $f_X(x) = \lambda e^{-\lambda x}, x > 0$, or more general
- Weibull saying $f_X(x) = \lambda \gamma x^{\gamma-1} e^{-\lambda x^{\gamma}}, x > 0$

vs. Kaplan-Meier estimate (no other assumptions).

Methodology: statistical theory provides asymptotic prob. dist'n for estimator and 95% confidence interval in each setting, which can be compared through σ :

$$\sqrt{n} \ (\tilde{p} - P(X_1 > t)) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

$$P(X_1 > t) \in \left(\tilde{p} - 1.96 \frac{\sigma}{\sqrt{n}}, \, \tilde{p} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

References

BACKGROUND:

Andersen, Borgan, Gill, and Keiding (1993) **Statistical**Models based on Counting Processes

Cox, D.R. (1972) Jour. Roy. Statist. Soc. B

R. Miller (1980) Survival Analysis

Sources for Current Lecture:

- R. Miller (1983) "What price Kaplan-Meier?" Biometrics, param. vs. nonparam. efficiency
- Slud & Kong (1997) Biometrika treatment effectiveness testing using 'adaptively' fitted misspecified Cox models
- Slud & Korn (1997) Biometrika testing in 2-grp case w ∞ -dim nuisance parameters in setting with 'post-randomization' variables
- Slud & Vonta (2002) Consistency of the NPML estimator in the right-censored transformation model.

 Preprint, available from web-page.

Parametric Max. Likelihood Th'y

Under general conditions satisfied here, with $\vartheta = (\lambda, \gamma)$ in Weibull case (which incl. Exponential when $\gamma = 1$),

$$\hat{\vartheta} = \arg \max_{\vartheta} \sum_{i=1}^{n} \log f_{T,\Delta}(T_i, \Delta_i)$$

is 'optimal' asympt. normal with covariance matrix the inverse of

$$\int \sum_{j=0}^{1} \left(-\nabla_{\vartheta}^{\otimes 2} \log f_{T,\Delta}(t,j) \right) f_{T,\Delta}(t,j) dt$$

In this setting

$$f_{T,\Delta}(t,j,\vartheta) = \begin{cases} f_X(t,\vartheta) S_C(t) & \text{if } j=1\\ S_X(t,\vartheta) f_C(t) & \text{if } j=0 \end{cases}$$

Censoring dist.'n unknown ('nuisance parameter') but not depending on ϑ so ignored in likelihood. Function to maximize in $\vartheta = (\lambda, \gamma)$ becomes

$$\sum_{i=1}^{n} \left\{ \log(\lambda \gamma) + \Delta_i (\gamma - 1) \log(T_i) - \lambda T_i^{\gamma} \right\}$$

Covariances found from integral which assumes specific censoring dist. Then for fixed t regard $S_X(t) = \exp(-\hat{\lambda} t^{\hat{\gamma}})$ as known smooth function $g(\vartheta)$ estimated by $\tilde{p} = g(\hat{\vartheta})$. By linearization ('Delta method')

asympt.
$$\operatorname{Var}(\sqrt{n}(\tilde{p}-p)) = \nabla'_{\vartheta} g(\vartheta) \operatorname{avar}(\hat{\vartheta}) \nabla_{\vartheta} g(\vartheta)$$

Nonparametric Kaplan-Meier Th'y

Recall that $S_X(t) = \exp(-\int_0^t h_X(x) dx)$. Define the **cumulative hazard function**

$$H_X(t) = \int_0^t h_X(x) dx = -\ln(S_X(t))$$

KM estimator of $S_X(t)$ from survival data is equiv. to

$$\hat{H}_X(t) = \int_0^t \frac{dN(t)}{Y(t)}$$

where

$$N(t) = \sum_{i=1}^{n} \Delta_i I_{[T_i \le t]}$$
, $Y(t) = \sum_{i=1}^{n} I_{[T_i \ge t]}$

Recall from last time: can view survival on $(t, t + \delta)$ for each surviving individual as an indep. coin-toss: failure occurs with prob. $\approx \delta \cdot h_X(t)$ each, so overall prob. of an observed failure is $\delta \cdot Y(t) h_X(t)$. Hence

$$N(t) - \int_0^t Y(x) h_X(x) dx$$
 is a martingale, as is

$$\sqrt{n} (\hat{H}_X(t) - H_X(t)) = \sqrt{n} \int_0^t \frac{dN(x) - h_X(x) Y(x) dx}{Y(x)}$$

From this, can prove asympt. normality and find variance formula, leading to

$$\sqrt{n} \left(\hat{S}_X^{KM}(t) - S_X(t) \right) \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, S_X^2(t) \int_0^t \frac{f_X(x) dx}{S_X^2(x) S_C(x)} \right)$$

Efficiency Comparison

Since Conf. Int. widths are proportional to σ_{est}/\sqrt{n} , equal widths can be achieved if another estimator with avar σ_{alt}^2 is applied on sample of size n_{alt} , where

$$\frac{n_{alt}}{n} = \mathbf{ARE}(\hat{\vartheta}_{alt}, \, \hat{\vartheta}_{est}) = \sigma_{alt}^2 / \sigma_{est}^2$$

Miller's (1983) ARE comparisons (Weibull vs KM) — in case of Expon censoring — are:

ARE's of KM versus parametric MLE of survival prob. at 3 quantiles 0.5, 0.25, 0, 0.1 for Weibull S_X and Exponential S_C . Shape parameter = γ .

				Quantiles		
				Upper	Upper	
γ	Known	Cens. %	Med.	Quartile	Decile	
1	Y	50	.64	.51	.21	
		25	.56	.64	.46	
		0	.48	.64	.59	
2	Y	50	.57	.58	.40	
		25	.52	.63	.52	
		0	.48	.64	.59	
2	N	50	.60	.62	.56	
		25	.63	.63	.62	
		0	.66	.64	.65	

Multiplicative Intensity Model

Cox (1972), Aalen (1978) introduced the class of models

$$\begin{split} E(N(t+dt) - N(t) \,|\, Z, \, (Y(s), V(s): \, s < t)) \\ &= \, Y(t-) \, e^{\beta' Z + \gamma' V(t-)} \, \lambda(t) \, dt \end{split}$$

Idea: parameters (β, γ) to be fitted describe effect on prognosis of individual subjects, while the (infinitedimensional) **nuisance hazard function** $\lambda(t)$ describes the general background population. Exponent usable as *prognostic index*.

Research Topics Related to Today's Lecture:

• Theoretical: large-sample theory of efficient estimators for semiparametric models like these with ∞ -dim nuisance parameters. Efron (1977), Johansen (1983) and others proved efficiency of Cox's (1972) estimator of $\hat{\beta}$ based on maximizing logLik with $\Lambda(t) = \int_0^t \lambda(s) ds$ replaced by

$$\hat{\Lambda}(t) = \int_0^t \left\{ \sum_i Y_i(s) e^{\beta' Z_i + \gamma' V_i(s-)} \right\}^{-1} dN(s)$$

which amounts to maximizing *Partial Likelihood*:

$$\prod_{i: \Delta_i = 1} \left\{ e^{\beta' Z_i + \gamma' V_i(T_i -)} / \sum_{j: T_j \ge T_i} e^{\beta' Z_j + \gamma' V_i(T_j -)} \right\}$$

- Misspecified Cox Models: can fit Cox model for adjusting treatment comparisons (like PBC example, last lecture), even when the model is not valid. (Lin & Wei 1989; Slud & Kong 1997)
- Variant Model: Pop'n Subgps w Related Parameters: Slud & Korn (1997) studied the model:

 $Z_{1,i}$ = treatment group indicator

 $Z_{2,i}$ = 'post-randomization' indicator (e.g. indicator of initial tumor shrinkage within 3 mos. after treatment)

$$h_{X|Z}(t|\mathbf{z} = (j,k)) = e^{j\beta_k} \lambda_k(t)$$

with β_i , β_2 , λ_1 , λ_2 unknown.

• Kopylev (1997 PhD thesis) studied estimation of $S_X(t)$ when multiplicative Intensity model holds with time-dependent covariates $V_i(t)$. Moderate-sample trials in which V_i summarizes patient-management regime are a growth area for 'data mining'.

Misspecified and Adaptive Analysis

Setting: Two-group trial, with covariates; assume treatment indicator Z_i independent of covariates given $Y_i(t) = 1$ (eg random treatment allocation). Can calculate asympt. variance under the null hypothesis $\vartheta = 0$ of the coeff $\hat{\vartheta}$ of Z_i in Cox-model incl. variables W_i : which is still approx. normal with mean 0.

Estimate using 'working model'

$$h_{X|Z,W}(t|z,w) = e^{\vartheta z + \beta W} \lambda(t)$$

Assume only that *some* model $e^{\vartheta z} \lambda(t, V)$ holds.

Can analyze and estimate from data with Z_i masked:

ARE ratio
$$avar_{\text{work}}(\hat{\vartheta})/avar_{\text{true}}(\hat{\vartheta})$$

Can do this for several models, covariate-sets W, and choose the best one based on Z-masked data; then test $\vartheta = 0$ using $\hat{\vartheta}$ in the best of these models!

FDA as regulatory authority still needs persuading about validity of this approach, developed in Kong & Slud (1997).

Variant Models, ∞ -dim Nuisance

 $Z_{1,i}$ = treatment group indicator (half in each grp)

 $Z_{2,i}$ = 'post-randomization' indicator (e.g. indicator of initial tumor shrinkage within 3 mos. after treatment)

$$h_{X|Z}(t|\mathbf{z} = (j,k)) = e^{j\beta_k} \lambda_k(t)$$

with β_i , β_2 , λ_1 , λ_2 unknown (Slud & Korn 1997).

ARE comparison. Nonparam. 2-group problem if $Z_{i,2}$ ignored, Kaplan-Meier estimator for each gp $S_{X|Z_1}(t|z=j)$. Alternatively, estimate unknowns in Cox model for each $Z_{2,i}=k$ group, to obtain difference of survival curves. Can calculate avar of $\Delta(t) \equiv S_{X|Z_1=1}(t) - S_{X|Z_1=0}(t)$ both ways, form **ARE** ratio!

Results: either using data beyond t_0 , or not.

ARE's of KM versus model-based estimator of $\Delta(t_0)$, uncensored case.

$S_{X z=1}(t_0)$	$S_{X Z=0}(t_0)$	ARE	ARE_{trunc}
.9	.9	.10	1.00
.9	.5	.50	0.98
.9	.1	.76	0.94
.5	.1	.60	0.90
.5	.5	.48	0.96
.1	.1	.59	0.66