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I. (11/6) Death Hazards & Competing Risks

Concepts :

(i) Statistical Estimation as mathematical problem,

(ii) Identifiability, nonparametric vs. nonparametric.

II. (11/13) Population Cohorts & Martingales

Concepts :

(iii) Counting process models,

(iv) “Innovations” and Statistics.

III. (11/20) Models and Likelihoods

with ∞-Dimensional Parameters

Concepts :

(v) Nuisance parameters,

(vi) Asymptotic Relative Efficiency.

Lecture Slides (incl. annotated references) at :

www.math.umd.edu/∼evs/SurvSlid3.pdf



Parametric vs. Nonparametric Trade-off

Return to survival-data setting of the first lecture to focus

the question of how much ‘efficiency’ is lost by nonpara-

metric statistical estimation of survival probability.

Data: Ti = min(Xi, Ci), ∆i = I[Xi≤Ci], Zi, 1 ≤ i ≤ n

event time, death-indicator, treatment-grp indicator

First Objective: estimation of P (X1 > t) includ-

ing 95% Confidence Interval, under assumption either of

indep. Xi, Ci or a more detailed parametric model.

Compare estimates based on popular parametric model

• Exponential which says fX(x) = λe−λx, x > 0 ,

or more general

• Weibull saying fX(x) = λ γ xγ−1 e−λx
γ
, x > 0

vs. Kaplan-Meier estimate (no other assumptions).

Methodology: statistical theory provides asymptotic

prob. dist’n for estimator and 95% confidence interval in

each setting, which can be compared through σ :
√
n (p̃− P (X1 > t)) D−→ N (0, σ2)

P (X1 > t) ∈




 p̃ − 1.96
σ√
n
, p̃ + 1.96

σ√
n






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Parametric Max. Likelihood Th’y
Under general conditions satisfied here, with ϑ = (λ, γ)

in Weibull case (which incl. Exponential when γ = 1),

ϑ̂ = argmax
ϑ

n
∑

i=1
log fT,∆(Ti,∆i)

is ‘optimal’ asympt. normal with covariance matrix the

inverse of
∫ 1

∑

j=0

(

−∇⊗2ϑ log fT,∆(t, j)
)

fT,∆(t, j) dt

In this setting

fT,∆(t, j, ϑ) =











fX(t, ϑ)SC(t) if j = 1

SX(t, ϑ) fC(t) if j = 0

Censoring dist.’n unknown (‘nuisance parameter’) but

not depending on ϑ so ignored in likelihood. Function

to maximize in ϑ = (λ, γ) becomes

n
∑

i=1
{log(λγ) + ∆i (γ − 1) log(Ti) − λT γ

i }

Covariances found from integral which assumes specific

censoring dist. Then for fixed t regard SX(t) =

exp(−λ̂ tγ̂) as known smooth function g(ϑ) estimated

by p̃ = g(ϑ̂). By linearization (‘Delta method’)

asympt. Var(
√
n(p̃− p)) = ∇′ϑ g(ϑ) avar(ϑ̂) ∇ϑ g(ϑ)
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Nonparametric Kaplan-Meier Th’y

Recall that SX(t) = exp(− ∫ t
0 hX(x) dx). Define the

cumulative hazard function

HX(t) =
∫ t

0
hX(x) dx = − ln(SX(t))

KM estimator of SX(t) from survival data is equiv. to

ĤX(t) =
∫ t

0

dN(t)

Y (t)

where

N(t) =
n
∑

i=1
∆i I[Ti≤t] , Y (t) =

n
∑

i=1
I[Ti≥t]

Recall from last time: can view survival on (t, t+δ) for

each surviving individual as an indep. coin-toss: failure

occurs with prob. ≈ δ · hX(t) each, so overall prob. of
an observed failure is δ · Y (t)hX(t). Hence
N(t)−

∫ t

0
Y (x)hX(x) dx is a martingale, as is

√
n (ĤX(t)−HX(t)) =

√
n

∫ t

0

dN(x)− hX(x)Y (x) dx

Y (x)

From this, can prove asympt. normality and find variance

formula, leading to

√
n

(

ŜKM
X (t)− SX(t)

) D−→ N




0, S2X(t)
∫ t

0

fX(x) dx

S2X(x)SC(x)






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Efficiency Comparison

Since Conf. Int. widths are proportional to σest/
√
n,

equal widths can be achieved if another estimator with

avar σ2alt is applied on sample of size nalt, where
nalt
n

= ARE(ϑ̂alt, ϑ̂est) = σ2alt/σ
2
est

Miller’s (1983) ARE comparisons (Weibull vs KM) — in

case of Expon censoring — are:

ARE’s of KM versus parametric MLE of survival prob.

at 3 quantiles 0.5, 0.25, 0, 0.1 for Weibull SX and

Exponential SC. Shape parameter = γ.

Quantiles

Upper Upper

γ Known Cens. % Med. Quartile Decile

1 Y 50 .64 .51 .21

25 .56 .64 .46

0 .48 .64 .59

2 Y 50 .57 .58 .40

25 .52 .63 .52

0 .48 .64 .59

2 N 50 .60 .62 .56

25 .63 .63 .62

0 .66 .64 .65
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Multiplicative Intensity Model

Cox (1972), Aalen (1978) introduced the class of models

E(N(t + dt)−N(t) |Z, (Y (s), V (s) : s < t))

= Y (t−) eβ′Z+γ′V (t−) λ(t) dt
Idea: parameters (β, γ) to be fitted describe effect

on prognosis of individual subjects, while the (infinite-

dimensional) nuisance hazard function λ(t) de-

scribes the general background population. Exponent

usable as prognostic index.

Research Topics Related to Today’s Lecture:

• Theoretical: large-sample theory of efficient es-

timators for semiparametric models like these with

∞-dim nuisance parameters. Efron (1977), Johansen
(1983) and others proved efficiency of Cox’s (1972)

estimator of β̂ based on maximizing logLik with

Λ(t) =
∫ t
0 λ(s) ds replaced by

Λ̂(t) =
∫ t

0







∑

i
Yi(s)e

β′Zi+γ′Vi(s−)






−1
dN(s)

which amounts to maximizing Partial Likelihood :

∏

i: ∆i=1











eβ
′Zi+γ′Vi(Ti−)/

∑

j:Tj≥Ti
eβ

′Zj+γ′Vi(Tj−)









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• Misspecified Cox Models : can fit Cox model for
adjusting treatment comparisons (like PBC example,

last lecture), even when the model is not valid. (Lin

& Wei 1989; Slud & Kong 1997)

• Variant Model: Pop’n Subgps w Related Parame-
ters: Slud & Korn (1997) studied the model:

Z1,i = treatment group indicator

Z2,i = ‘post-randomization’ indicator (e.g. indi-

cator of initial tumor shrinkage within 3 mos. after

treatment)

hX|Z(t|z = (j, k)) = ej βk λk(t)

with βi, β2, λ1, λ2 unknown.

• Kopylev (1997 PhD thesis) studied estimation of SX(t)
when multiplicative Intensity model holds with time-

dependent covariates Vi(t) . Moderate-sample tri-

als in which Vi summarizes patient-management

regime are a growth area for ‘data mining’.
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Misspecified and Adaptive Analysis

Setting: Two-group trial, with covariates; assume

treatment indicator Zi independent of covariates given

Yi(t) = 1 (eg random treatment allocation). Can calcu-

late asympt. variance under the null hypothesis ϑ = 0

of the coeff ϑ̂ of Zi in Cox-model incl. variables

Wi: which is still approx. normal with mean 0.

Estimate using ‘working model’

hX|Z,W (t|z, w) = eϑz+βW λ(t)

Assume only that some model eϑz λ(t, V ) holds.

Can analyze and estimate from data with Zi masked:

ARE ratio avarwork(ϑ̂)/avartrue(ϑ̂)

Can do this for several models, covariate-sets W, and

choose the best one based on Z-masked data; then

test ϑ = 0 using ϑ̂ in the best of these models !

FDA as regulatory authority still needs persuading about

validity of this approach, developed in Kong & Slud (1997).
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Variant Models, ∞-dim Nuisance
Z1,i = treatment group indicator (half in each grp)

Z2,i = ‘post-randomization’ indicator (e.g. indicator

of initial tumor shrinkage within 3 mos. after treatment)

hX|Z(t|z = (j, k)) = ej βk λk(t)

with βi, β2, λ1, λ2 unknown (Slud & Korn 1997).

ARE comparison. Nonparam. 2-group problem

if Zi,2 ignored, Kaplan-Meier estimator for each gp

SX|Z1
(t|z = j) . Alternatively, estimate unknowns in

Cox model for each Z2,i = k group, to obtain differ-

ence of survival curves. Can calculate avar of ∆(t) ≡
SX|Z1=1(t)− SX|Z1=0(t) both ways, form ARE ratio !

Results: either using data beyond t0, or not.

ARE’s of KM versus model-based estimator of ∆(t0),

uncensored case.

SX|z=1(t0) SX|Z=0(t0) ARE AREtrunc

.9 .9 .10 1.00

.9 .5 .50 0.98

.9 .1 .76 0.94

.5 .1 .60 0.90

.5 .5 .48 0.96

.1 .1 .59 0.66
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