3-Lecture Minicourse on
Statistics of Survival Data

Eric Slud

[. (11/6) Death Hazards & Competing Risks

Concepts:
(i) Statistical Estimation as mathematical problem,
(ii) Identifiability, nonparametric vs. nonparametric.

I1. (11/13) Population Cohorts & Martingales

Concepts:
(iii) Counting process models,
(iv) “Innovations” and Statistics.

ITI. (11/20) Models and Likelihoods
with co-Dimensional Parameters

Concepts:
(v) Nuisance parameters,
(vi) Asymptotic Relative Efficiency.

Lecture Slides (incl. annotated references) at
www.math.umd.edu/~evs/SurvSlid3.pdf



Parametric vs. Nonparametric Trade-off

Return to survival-data setting of the first lecture to focus
the question of how much ‘efficiency’ is lost by nonpara-
metric statistical estimation of survival probability.

Data: T'z = min(Xi, C@); Al = ][XiSCi]7 ZZ', 1 S 1 S n

event time, death-indicator, treatment-grp indicator

First Objective: estimation of P(X; > t) includ-

ing 95% Confidence Interval, under assumption either of

indep. X;, C; or a more detailed parametric model.
Compare estimates based on popular parametric model

e Exponential which says fx(z) = Ae ™, 2 >0,
or more general

e Weibull saying fy(z) = Ayz? e ™ >0

vs. Kaplan-Meier estimate (no other assumptions).

Methodology: statistical theory provides asymptotic
prob. dist’n for estimator and 95% confidence interval in
cach setting, which can be compared through o :

vn (p—P(X1 > 1) = N0, o)

Vn Vn

P(X)>1) € (p“ 1962 5+ 1.960)
n
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Parametric Max. Likelihood Th’y

Under general conditions satisfied here, with 9 = (A, )
in Weibull case (which incl. Exponential when ~ = 1),

19 — argmgix Zn: long,A(TiaAi)
1=1

is ‘optimal’ asympt. normal with covariance matrix the
inverse of

[ £ (= Vi log fralt, ) fra(t,j)dt

In this setting

Fra(t,§,0) = {fx(t,ﬁ)Sc(t) -1

Sx(t,d) folt) i =0
Censoring dist.'n unknown (‘nuisance parameter’) but

not depending on ¢ so ignored in likelihood. Function
to maximize in ¥ = (\,7y) becomes

é {log(Ay) + Ai(y—1) log(Ti) — AT}

Covariances found from integral which assumes specific
censoring dist. Then for fixed ¢t regard Sx(f) =
exp(—=At?) as known smooth function ¢(9) estimated
by p= g(¥). By linearization (‘Delta method’)

asympt. Var(v/n(p —p)) = Vjg(9) avar(d) Vy g(¥)



Nonparametric Kaplan-Meier Th’y
Recall that Sx(t) = exp(— J§ hx(z)dzx). Define the

cumulative hazard function

Hx(t) /0 hx(x)dr = —In(Sx(t))
KM estimator of Sx(t) from survival data is equiv. to
- t dN(t)
Hx(t) = -
where
N( ) g AV ]T<t 3 Y(t) - ; ][TiZt]

Recall from last time: can view survival on (¢,t+4) for
each surviving individual as an indep. coin-toss: failure
occurs with prob. /&~ § - hx(t) each, so overall prob. of
an observed failure is ¢ - Y(¢) hx(t). Hence

t

N(t) — /0 Y(z)hx(x)dxr  isa martingale, as is

Vi (Hy ()~ Hy(t) = v [ ?}25)7 ) Yiw)dx

From this, can prove asympt. normality and find variance

formula, leading to

v (SEM(t) — Sx(t)) N(O’ Sk S% %;jf))




Efficiency Comparison

Since Conf. Int. widths are proportional to oest/\/1,

equal widths can be achieved if another estimator with

2

avar o

, 1s applied on sample of size ng,y, where

A

Rait ARE(Y 1, éest) = Uc%lt/ Uzst

n
Miller’s (1983) ARE comparisons (Weibull vs KM) — in
case of Expon censoring — are:

ARE’s of KM versus parametric MLE of survival prob.
at 3 quantiles 0.5, 0.25,0,0.1 for Weibull Sx and
FExponential Sc. Shape parameter = .

Quantiles

Upper  Upper
v Known Cens. % Med. Quartile Decile

1 Y 50 .64 01 21
25 06 .64 46

0 A8 .64 .09

2 Y 50 Y 58 40
25 D2 .63 D2

0 A8 .64 .09

2 N 50 .60 .62 00
20 .63 .63 .62

0 .66 .64 .65



Multiplicative Intensity Model
Cox (1972), Aalen (1978) introduced the class of models

E(N(t+dt)— N@®)| Z, (Y(s),V(s): s <t))
= Y(t—) MV N di

Idea: parameters (0,7) to be fitted describe effect
on prognosis of individual subjects, while the (infinite-
dimensional) nuisance hazard function A(¢) de-
scribes the general background population. Exponent
usable as prognostic index.

Research Topics Related to Today’s Lecture:

e Theoretical: large-sample theory of efficient es-
timators for semiparametric models like these with
oo-dim nuisance parameters. Efron (1977), Johansen
(1983) and others proved efficiency of Cox’s (1972)
estimator of B based on maximizing [logLik with

A(t) = Jt M(s)ds replaced by

Ao = [ {5 vtz angs

1

which amounts to maximizing Partial Likelihood:

I (el ZtViTim) /¥ B Zi+2'VilTj-)
1 A;=1 J:T;27T;



o Misspecified Cox Models : can fit Cox model for
adjusting treatment comparisons (like PBC example,
last lecture), even when the model is not valid. (Lin

& Wei 1989; Slud & Kong 1997)

o Variant Model: Pop’n Subgps w Related Parame-
ters: Slud & Korn (1997) studied the model:

Z1; = treatment group indicator

Zy; = ‘post-randomization’ indicator (e.g. indi-
cator of initial tumor shrinkage within 3 mos. after
treatment)

hxz(tlz = (j,k)) = e/ % Ai(t)
with 3, B2, A1, A2 unknown.

e Kopylev (1997 PhD thesis) studied estimation of Sx ()
when multiplicative Intensity model holds with time-
dependent covariates V;(t) . Moderate-sample tri-
als in which V; summarizes patient-management
regime are a growth area for ‘data mining’.



Misspecified and Adaptive Analysis

Setting: Two-group trial, with covariates; assume
treatment indicator Z; independent of covariates given
Yi(t) = 1 (eg random treatment allocation). Can calcu-
late asympt. variance under the null hypothesis v = 0
of the coeff 0 of Z; 1in Cox-model incl. variables
Wi which is still approx. normal with mean 0.

Estimate using ‘working model’

hxjzw(tlz,w) = "W A@)

Assume only that some model e”* \(t, V) holds.

Can analyze and estimate from data with Z; masked:

ARE ratio avarwork(@) / avartme(zgl)

Can do this for several models, covariate-sets W, and
choose the best one based on Z-masked data; then
test 9 =0 using 9 in the best of these models !

FDA as regulatory authority still needs persuading about
validity of this approach, developed in Kong & Slud (1997).



Variant Models, co-dim Nuisance
Zy; = treatment group indicator (half in each grp)

Zy; = ‘post-randomization’ indicator (e.g. indicator
of initial tumor shrinkage within 3 mos. after treatment)

hxiz(tlz = (5,k) = &% Ni(t)
with 3, B2, A1, Ay unknown (Slud & Korn 1997).

ARE comparison. Nonparam. 2-group problem
if Z;2 ignored, Kaplan-Meier estimator for each gp
Sx|z,(tlz = j) . Alternatively, estimate unknowns in
Cox model for each Zs; = k group, to obtain differ-
ence of survival curves. Can calculate avar of A(t) =
Sx|z,=1(t) = Sx|z,-0(t) both ways, form ARE ratio !

Results: either using data beyond ¢, or not.

ARE’s of KM versus model-based estimator of Alty),
uncensored case.

Sx|.=1(to) Sx|z—o(to) ARE ARE;. e

9 9 10 1.00
9 D .50 0.98
9 1 76 0.94
D 1 .60 0.90
D D A8 0.96
1 1 .09 0.66



