# BRR Estimation of Variance of Survey Estimates Weight-adjusted for Nonresponse 

Eric Slud \& Yves Thibaudeau, eric.v.slud@census.gov

Objective: understand bias of Balanced Repeated Replication Variance of survey-weighted nonresponse-adjusted estimates with misspecified nonresponse adjustments.

Method: linearized large-sample formulas and simulation under superpopulation model with reasonable assumptions on attributes, split-PSU's, and pattern of response probabilities.

## Rationale

Large complex surveys generally involve

- nonresponse adjustments, based on adjustment cells (using ratio adjustment, raking or calibration)
- difficulty in specifying joint inclusion probabilities adjusted for nonresponse
- replication-based variance estimators

Justifications of BRR (e.g. Krewski-Rao 1981) for complete response, not misspecified nonresponse adjustment.

Nonresp. adjustment bias treated by Särndal \& Lündstrom 2005.
Effect of erroneous adjustment on BRR was not treated before.

## Framework \& Notation

Large frame $\mathcal{U}$, size $N$, (balanced) split-PSU's $\mathcal{U}_{k H}, H=1,2$
Adjustment cells $C_{m}, \quad m=1, \ldots, M$, partition $\mathcal{U}$
Stratified Simple Random Sample $\mathcal{S}=\cup_{k, H} \mathcal{S}_{k H}$

- attributes $y_{i}$, single \& joint inclusion probabilities $\pi_{i}, \pi_{i j}$
- sampling fraction $f$ small, same in all PSU's; $n=f N$ large
$r_{i}$ the $\{0,1\}$ valued random response indicator of unit $i$ assumed independent with: $\quad E\left(r_{i}\right)=1 / \phi_{i}=\rho_{l}$ when $i \in B_{l}$

$$
\mathcal{U}=\stackrel{\text { true resp. cells }}{B_{1} \cup B_{2} \cup \cdots \cup B_{L}}=C_{1} \cup C_{2} \cup \cdots \cup C_{M}
$$

## Survey Weighted Total Estimator

$$
\hat{Y} \equiv \sum_{m=1}^{M} \sum_{\mathcal{S} \cap C_{m}} \widehat{c}_{m} \frac{r_{i}}{\pi_{i}} y_{i}, \quad \text { Adjustmt } \quad \hat{c}_{m}=\frac{\sum \mathcal{S} \cap C_{m} \pi_{i}^{-1}}{\sum_{\mathcal{S} \cap C_{m}} r_{i} \pi_{i}^{-1}}
$$

is also regression estimator with predictors

$$
\mathbf{x}_{i}=\left(I_{\left[i \in C_{1}\right]}, I_{\left[i \in C_{2}\right]}, \ldots, I_{\left[i \in C_{M}\right]}\right)
$$

Regression $\quad \widehat{\beta}_{m} \equiv \sum_{i \in \mathcal{S} \cap C_{m}} \frac{r_{i} y_{i}}{\pi_{i}} / \sum_{i \in \mathcal{S} \cap C_{m}} \frac{r_{i}}{\pi_{i}}$
Residuals $\quad \hat{e}_{i} \equiv y_{i}-\widehat{\beta}_{m} \quad$ for $\quad i \in C_{m}$

Could replace factors $\hat{c}_{m}$ by $\tilde{\phi}_{i}=1 /$ (predictors)
from logistic regression model.

## (Fay-Method) BRR Variance Estimator

Replicate factors $f_{i t}=.5,1.5$ indexed by $t=1 \ldots R, i \in \mathcal{U}$

$$
f_{i t}=1+0.5(-1)^{H} a_{k t} \quad \text { if } \quad i \in \mathcal{U}_{k H}, \quad a_{k t}= \pm 1
$$

Replicate Adjustment Factor: $\quad \hat{c}_{m}^{(t)}=\frac{\sum_{i \in \mathcal{S} \cap C_{m}}\left(f_{i t} / \pi_{i}\right)}{\sum_{i \in \mathcal{S} \cap C_{m}}\left(f_{i t} r_{i} / \pi_{i}\right)}$
Replicate Survey Estimator: $\quad \hat{Y}^{(t)}=\sum_{m} \sum_{\mathcal{S} \cap C_{m}} \frac{f_{i t} r_{i}}{\pi_{i}} \widehat{c}_{m}^{(t)} y_{i}$
BRR Estimator of $V(\hat{Y}): \quad \hat{V}_{\mathrm{BRR}}=4 R^{-1} \sum_{t=1}^{R}\left(\widehat{Y}^{(t)}-\hat{Y}\right)^{2}$
$\approx f^{-2} \sum_{k}\left[\sum_{i \in \mathcal{S}_{k, 1}}\left(\widehat{\beta}_{m(i)}+r_{i} \hat{c}_{m(i)} \hat{e}_{i}\right)-\sum_{i \in \mathcal{S}_{k, 2}}\left(\widehat{\beta}_{m(i)}+r_{i} \hat{c}_{m(i)} \hat{e}_{i}\right)\right]^{2}$

## Inclusion Prob Variance Estimators

Särndal-Lündstrom (2005) approximate formula

$$
\hat{V}_{S L}=\sum_{m} \sum_{i \in \mathcal{S} \cap C_{m}}\left(\hat{c}_{m}-1\right)\left(\frac{\hat{e}_{i}}{\pi_{i}}\right)^{2}+\sum_{i, j \in \mathcal{S}}\left(\frac{\pi_{i j}}{\pi_{i} \pi_{j}}-1\right) \frac{y_{i} y_{j}}{\pi_{i j}}
$$

With $\hat{c}_{m}$ replaced for $i \in C_{m}$ by $\tilde{\phi}_{i}$ : we have a more accurate new linearization formula

$$
\begin{gathered}
\hat{V}(\widehat{Y})=\sum_{m=1}^{M} \sum_{i \in \mathcal{S} \cap C_{m}}\left(\tilde{\phi}_{i}-1\right)\left(\frac{\widehat{e}_{i}}{\pi_{i}}\right)^{2}\left(\frac{\hat{c}_{m}^{2}}{\tilde{\phi}_{i}}\right)^{2} \\
+\sum_{i, j \in \mathcal{S}}\left(\frac{\pi_{i j}}{\pi_{i} \pi_{j}}-1\right) \frac{1}{\pi_{i j}}\left(\widehat{\beta}_{m(i)}+\frac{\widehat{c}_{m(i)}}{\tilde{\phi}_{i}} \widehat{e}_{i}\right)\left(\widehat{\beta}_{m(j)}+\frac{\widehat{c}_{m(j)}}{\tilde{\phi}_{j}} \widehat{e}_{j}\right)
\end{gathered}
$$

## Superpopulation Framework

- $r_{i}$ assumed indep. $\operatorname{Binom}\left(1, \rho_{l}\right), \quad i \in B_{l}$
- $y_{i}$ assumed indep. $\sim\left(\mu_{k}, \sigma^{2}\right)$ for $i \in \mathcal{U}_{k H}$
- True resp. cells $B_{l}$, working cells $C_{m}, \frac{1}{2}$-PSU's $\mathcal{U}_{k H}$ have limiting intersection proportions

$$
N^{-1} \#\left(\mathcal{U}_{k H} \cap B_{l} \cap C_{m}\right) \approx \nu(l, m, k, H)
$$

## Problem: to Compare $\hat{V}(\hat{Y}), \hat{V}_{S L}, E\left(\hat{V}_{\mathbf{B R R}}\right)$

- As $N \rightarrow \infty, f \hat{V}(\hat{Y}) / N$ and $f \hat{V}_{S L} / N$ have limits.
- With $K$ finite: $\frac{f}{N} \hat{V}_{\mathrm{BRR}} \nrightarrow$; examine only $\frac{f}{N} E\left(\hat{V}_{\mathrm{BRR}}\right)$.


## Limiting Parameter Values

Half-PSU and cell indices ( $l, m, k, H$ ) approx. $\quad \nu(\cdot)$-distributed for $i \in B_{l} \cap C_{m} \cap \mathcal{U}_{k H}$ for randomly chosen in $\mathcal{U}$.

$$
\begin{gathered}
\hat{c}_{m} \rightarrow c_{m} \equiv 1 / E_{\nu}\left(\rho_{l} \mid m\right) \\
\hat{\beta}_{m} \rightarrow \beta_{m}^{0} \equiv E_{\nu}\left(\rho_{l} \mu_{k} \mid m\right) / E_{\nu}\left(\rho_{l} \mid m\right)
\end{gathered}
$$

Limits for Bias \& Variance Expressions

$$
\begin{gathered}
\frac{f}{N} \widehat{V}_{S L} \rightarrow \sum_{l, m, k, H}\left\{\sigma^{2} c_{m}+\left(c_{m}-1\right)\left(\mu_{k}-\beta_{m}^{0}\right)^{2}\right\} \nu(l, m, k, H) \\
\lim _{N} \operatorname{Bias}(\hat{Y} / N) \rightarrow \sum_{l, m, k, H}\left(\beta_{m}^{0}-\mu_{k}\right) \nu(l, m, k, H)
\end{gathered}
$$

Limits $\frac{f}{N} \widehat{V}(\hat{Y}), \quad \frac{f}{N} E\left(\hat{V}_{\mathrm{BRR}}\right)$ more complicated.

## Properties of Cell Intersections \& PSU's

(A) For all $k, l, m, \quad \nu(l, m, k, 1)=\nu(l, m, k, 2)$.

Half-PSU's perfectly asymptotically balanced across intersections of PSU's, true and adjustment cells.
(B) For all $k, l, m, H, \quad \nu(l \mid m)=\nu(l \mid m, k, H)$.

True cell conditionally indep. of half-PSU given adj. cell.
Proposition. Under (A), $\quad(f / N)\left(E\left(\hat{V}_{\mathrm{BRR}}\right)-\hat{V}(\hat{Y})\right) \rightarrow 0$.
Under (B): $\frac{f}{N}\left(\widehat{V}(\hat{Y})-\hat{V}_{S L}\right) \rightarrow 0$ and $\operatorname{Bias}(\widehat{Y} / N) \rightarrow 0$, and $\max _{k} \frac{1}{N}\left|\# \mathcal{U}_{k 1}-\# \mathcal{U}_{k 2}\right| \rightarrow 0 \Rightarrow \frac{f}{N}\left(E\left(\hat{V}_{\mathrm{BRR}}\right)-\hat{V}(\hat{Y})\right) \rightarrow 0$.

If $H$ is chosen randomly, independently for each $i$ then BRR is large-sample unbiased.

## Computations \& Simulations: Design

$L=M=10, K=20,5$ distinct PSU's in blocks of 4 each PSU attrib. means $\mu_{k}=1.5 \ldots 2.5, \sigma=.8$
Response probabilities $\rho_{l}$ spaced $0.6 \ldots 1.0$, avg. $=0.8$

Example $\nu(l, m, k, H)$ Arrays, quantified by: missp $=$ Misspecification of cells $\operatorname{Var}_{\nu}^{1 / 2}\left(\rho_{l} c_{m}\right)$, 07 to . 16 SDcond $=$ average over $(l, m)$ of $\operatorname{SD}\left(\{\nu(l \mid m, k, H)\}_{k, H}\right)$ (measures violation of (B)), ranging 0 to . 01
imbalance parameter $\omega=0,0.1, \quad \nu(H \mid l, m, k)=\frac{1}{2}(1 \pm \omega)$ random signs $\pm$ indep. for all $(k, l, m)$

Table of $V n / N^{2}$ Values, where $n=4000, \omega=0.1$
Simulations done with 1000 iterations.

Theoretical Simulated Simulated

| Examp | VY | Vbrr | VY.mean | VB.mean | VY.sd | VB.sd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | .832 | 0.864 | 0.832 | 0.863 | .047 | .282 |
| b | .841 | 0.917 | 0.839 | 0.934 | .049 | .312 |
| c | .851 | 1.023 | 0.850 | 1.034 | .050 | .325 |

NOTES. (1) Linearized approximation used for BRR, has relative error in range ( $-.001,0$ ).
(2) Simulations corroborate formulas. BRR more biased and has larger SE when PSU's are fewer .

## BRR vs Incl Prob SE's in SIPP 1996

In Survey of Income \& Program Participation 1996 panel, self representing strata ( $60 \%$ of sample) had split-PSU design. Systematic sample within PSU, by HU; split by alternate index.

Survey uses BRR: inclusion probabilities thought unrealistic due to systematic sampling \& Wave 1 nonresponse adjustment.

Table: SD's for SIPP 1996 SR strata Wave 1 totals, estimated from BRR vs. Household ppswr incl. prob.'s.

| Item | Total/10 | HHpps.SE | BRR.SE |
| :---: | :---: | :---: | :---: |
| Foodst | 1.538 | 390471 | 481500 |
| SocSec | 2.057 | 279827 | 300225 |
| UnEmp | 0.379 | 136608 | 126464 |
| Divorce | 1.088 | 204829 | 206557 |

## Summary \& Conclusions

Studied BRR bias for complex surveys under misspecified response models, showing for large samples:
(1) For half-PSU index H balanced across cells intersected with PSU's, BRR variance estimator is remarkably unbiased.
(2) Imbalances of a few percent can inflate $B R R$ variance from a few percent to a lot (40-50\% or greater), depending on misspecification and PSU \& cell intersection patterns.
(3) More strata/PSU's, less bias in BRR variances.

Caveat: superpopulation model oversimplifies attributes by PSU.

## References

1. Fay, R. (1984) ASA, SRMS Proc. pp. 495-500.
2. Fay, R. (1989) ASA, SRMS Proc. pp. 212-217.
3. Kish, L. and Frankel, M. (1970) JASA.
4. Krewski, D. and Rao, J.N.K. (1981) Ann. Statist.
5. Oh, H. and Scheuren, F. (1983) paper in: Incomplete Data in Sample Surveys, vol. 2, 143-184.
6. Särndal, C.-E. and Lündstrom, S. (2005) Estimation in Surveys with Nonresponse. Wiley.
7. Slud, E. and Bailey, L. (2007) FCSM
