BRR Estimation of Variance of Survey Estimates Weight-adjusted for Nonresponse

Eric Slud & Yves Thibaudeau, eric.v.slud@census.gov

Objective: understand bias of Balanced Repeated Replication Variance of survey-weighted nonresponse-adjusted estimates with misspecified nonresponse adjustments.

Method: linearized large-sample formulas and simulation under superpopulation model with reasonable assumptions on attributes, split-PSU's, and pattern of response probabilities.

Rationale

Large complex surveys generally involve

- nonresponse adjustments, based on adjustment cells (using ratio adjustment, raking or calibration)
- difficulty in specifying joint inclusion probabilities adjusted for nonresponse
- replication-based variance estimators

Justifications of BRR (e.g. Krewski-Rao 1981) for complete response, not *misspecified* nonresponse adjustment.

Nonresp. adjustment bias treated by Särndal & Lündstrom 2005.

Effect of erroneous adjustment on BRR was not treated before.

Framework & Notation

Large frame U, size N, (balanced) split-PSU's U_{kH} , H = 1, 2

Adjustment cells C_m , $m = 1, \ldots, M$, partition \mathcal{U}

Stratified Simple Random Sample $S = \cup_{k,H} S_{kH}$

- attributes y_i , single & joint inclusion probabilities π_i , π_{ij}
- sampling fraction f small, same in all PSU's; n = fN large
- r_i the {0,1} valued random response indicator of unit iassumed independent with : $E(r_i) = 1/\phi_i = \rho_l$ when $i \in B_l$

true resp. cells working cells $\mathcal{U} = B_1 \cup B_2 \cup \cdots \cup B_L = C_1 \cup C_2 \cup \cdots \cup C_M$

Survey Weighted Total Estimator

$$\hat{Y} \equiv \sum_{m=1}^{M} \sum_{\mathcal{S} \cap C_m} \hat{c}_m \, \frac{r_i}{\pi_i} y_i \,, \quad \text{Adjustmt} \quad \hat{c}_m = \frac{\sum_{\mathcal{S} \cap C_m} \pi_i^{-1}}{\sum_{\mathcal{S} \cap C_m} r_i \pi_i^{-1}}$$

is also regression estimator with predictors

$$\mathbf{x}_{i} = (I_{[i \in C_{1}]}, I_{[i \in C_{2}]}, \dots, I_{[i \in C_{M}]})$$
Regression
$$\hat{\beta}_{m} \equiv \sum_{i \in S \cap C_{m}} \frac{r_{i} y_{i}}{\pi_{i}} / \sum_{i \in S \cap C_{m}} \frac{r_{i}}{\pi_{i}}$$
Residuals
$$\hat{e}_{i} \equiv y_{i} - \hat{\beta}_{m} \quad \text{for} \quad i \in C_{m}$$

Could replace factors \hat{c}_m by $\tilde{\phi}_i = 1/(\text{predictors})$ from *logistic regression* model.

(Fay-Method) BRR Variance Estimator **Replicate factors** $f_{it} = .5, 1.5$ indexed by $t = 1 \dots R, i \in U$ $f_{it} = 1 + 0.5 (-1)^{H} a_{kt}$ if $i \in \mathcal{U}_{kH}$, $a_{kt} = \pm 1$ Replicate Adjustment Factor: $\hat{c}_m^{(t)} = \frac{\sum_{i \in S \cap C_m} (f_{it}/\pi_i)}{\sum_{i \in S \cap C_m} (f_{it} r_i/\pi_i)}$ Replicate Survey Estimator: $\hat{Y}^{(t)} = \sum_{m} \sum_{S \cap C_m} \frac{f_{it} r_i}{\pi_i} \hat{c}_m^{(t)} y_i$ **BRR Estimator of** $V(\hat{Y})$: $\hat{V}_{\mathsf{BRR}} = 4R^{-1} \sum_{k=1}^{R} (\hat{Y}^{(k)} - \hat{Y})^2$ $\approx f^{-2} \sum_{k} \left[\sum_{i \in \mathcal{S}_{k,1}} \left(\hat{\beta}_{m(i)} + r_i \, \hat{c}_{m(i)} \, \hat{e}_i \right) - \sum_{i \in \mathcal{S}_{k,2}} \left(\hat{\beta}_{m(i)} + r_i \, \hat{c}_{m(i)} \, \hat{e}_i \right) \right]^2$

Inclusion Prob Variance Estimators

Särndal-Lündstrom (2005) approximate formula

$$\hat{V}_{SL} = \sum_{m} \sum_{i \in \mathcal{S} \cap C_m} \left(\hat{c}_m - 1\right) \left(\frac{\hat{e}_i}{\pi_i}\right)^2 + \sum_{i,j \in \mathcal{S}} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1\right) \frac{y_i y_j}{\pi_{ij}}$$

With \hat{c}_m replaced for $i \in C_m$ by $\tilde{\phi}_i$: we have a more accurate new linearization formula

$$\hat{V}(\hat{Y}) = \sum_{m=1}^{M} \sum_{i \in S \cap C_m} (\tilde{\phi}_i - 1) \left(\frac{\hat{e}_i}{\pi_i}\right)^2 \left(\frac{\hat{c}_m^2}{\tilde{\phi}_i}\right)^2 + \sum_{i,j \in S} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1\right) \frac{1}{\pi_{ij}} \left(\hat{\beta}_{m(i)} + \frac{\hat{c}_{m(i)}}{\tilde{\phi}_i} \hat{e}_i\right) \left(\hat{\beta}_{m(j)} + \frac{\hat{c}_{m(j)}}{\tilde{\phi}_j} \hat{e}_j\right)$$

Superpopulation Framework

- r_i assumed indep. Binom $(1, \rho_l)$, $i \in B_l$
- y_i assumed indep. \sim (μ_k, σ^2) for $i \in \mathcal{U}_{kH}$
- True resp. cells B_l , working cells C_m , $\frac{1}{2}$ -PSU's \mathcal{U}_{kH} have limiting intersection proportions

$$N^{-1} # (\mathcal{U}_{kH} \cap B_l \cap C_m) \approx \nu(l, m, k, H)$$

Problem: to Compare $\hat{V}(\hat{Y}), \hat{V}_{SL}, E(\hat{V}_{BRR})$

- As $N \to \infty$, $f \hat{V}(\hat{Y})/N$ and $f \hat{V}_{SL}/N$ have limits.
- With K finite: $\frac{f}{N} \hat{V}_{BRR} \neq ;$ examine only $\frac{f}{N} E(\hat{V}_{BRR}).$

Limiting Parameter Values

Half-PSU and cell indices (l, m, k, H) approx. $\nu(\cdot)$ -distributed for $i \in B_l \cap C_m \cap \mathcal{U}_{kH}$ for randomly chosen in \mathcal{U} .

$$\hat{c}_m \rightarrow c_m \equiv 1/E_{\nu}(\rho_l \mid m)$$

$$\widehat{\beta}_m \rightarrow \beta_m^0 \equiv E_{\nu}(\rho_l \,\mu_k \,|\, m) / E_{\nu}(\rho_l \,|\, m)$$

Limits for Bias & Variance Expressions

$$\frac{f}{N} \hat{V}_{SL} \rightarrow \sum_{l,m,k,H} \{ \sigma^2 c_m + (c_m - 1) (\mu_k - \beta_m^0)^2 \} \nu(l,m,k,H)$$
$$\lim_N \operatorname{Bias}(\hat{Y}/N) \rightarrow \sum_{l,m,k,H} (\beta_m^0 - \mu_k) \nu(l,m,k,H)$$

Limits $\frac{f}{N}\hat{V}(\hat{Y})$, $\frac{f}{N}E(\hat{V}_{BRR})$ more complicated.

Properties of Cell Intersections & PSU's

(A) For all $k, l, m, \nu(l, m, k, 1) = \nu(l, m, k, 2).$

Half-PSU's perfectly asymptotically balanced across intersections of PSU's, true and adjustment cells.

(B) For all k, l, m, H, $\nu(l|m) = \nu(l|m, k, H)$. True cell conditionally indep. of half-PSU given adj. cell.

Proposition. Under (A), $(f/N) (E(\hat{V}_{\mathsf{BRR}}) - \hat{V}(\hat{Y})) \to 0.$ Under (B): $\frac{f}{N} (\hat{V}(\hat{Y}) - \hat{V}_{SL}) \to 0$ and $\mathsf{Bias}(\hat{Y}/N) \to 0,$ and $\max_k \frac{1}{N} |\# \mathcal{U}_{k1} - \# \mathcal{U}_{k2}| \to 0 \Rightarrow \frac{f}{N} (E(\hat{V}_{\mathsf{BRR}}) - \hat{V}(\hat{Y})) \to 0.$

If H is chosen randomly, independently for each i then BRR is large-sample unbiased.

Computations & Simulations: Design

L = M = 10, K = 20, 5 distinct PSU's in blocks of 4 each **PSU attrib. means** $\mu_k = 1.5 \dots 2.5$, $\sigma = .8$ **Response probabilities** ρ_l spaced 0.6 ... 1.0, avg. = 0.8

Example $\nu(l, m, k, H)$ Arrays, quantified by: missp = Misspecification of cells $\operatorname{Var}_{\nu}^{1/2}(\rho_l c_m)$, .07 to .16 SDcond = average over (l, m) of $\operatorname{SD}(\{\nu(l|m, k, H)\}_{k, H})$ (measures violation of **(B)**), ranging 0 to .01

imbalance parameter $\omega = 0, 0.1$, $\nu(H|l, m, k) = \frac{1}{2} (1 \pm \omega)$ random signs \pm indep. for all (k, l, m)

Table of $V n / N^2$ Values, where n = 4000, $\omega = 0.1$ Simulations done with 1000 iterations.

	Theoretical		Simulated		Simulated	
Examp	VY	Vbrr	VY.mean	VB.mean	VY.sd	VB.sd
a	.832	0.864	0.832	0.863	.047	.282
b	.841	0.917	0.839	0.934	.049	.312
С	.851	1.023	0.850	1.034	.050	.325

NOTES. (1) Linearized approximation used for BRR, has relative error in range (-.001, 0).

(2) Simulations corroborate formulas. BRR more biased and has larger SE when PSU's are fewer .

BRR vs Incl Prob SE's in SIPP 1996

In Survey of Income & Program Participation 1996 panel, self representing strata (60% of sample) had split-PSU design. Systematic sample within PSU, by HU; split by alternate index.

Survey uses BRR: inclusion probabilities thought unrealistic due to systematic sampling & Wave 1 nonresponse adjustment.

Table: SD's for SIPP 1996 *SR strata* Wave 1 totals, estimated from BRR vs. Household ppswr incl. prob.'s.

Item	Total/10 ⁷	HHpps.SE	BRR.SE
Foodst	1.538	390471	481500
SocSec	2.057	279827	300225
UnEmp	0.379	136608	126464
Divorce	1.088	204829	206557

Summary & Conclusions

Studied BRR bias for complex surveys under misspecified response models, showing for large samples:

- (1) For half-PSU index H balanced across cells intersected with PSU's, BRR variance estimator is remarkably **un**biased.
- (2) Imbalances of a few percent can inflate BRR variance from a few percent to a lot (40-50% or greater), depending on misspecification and PSU & cell intersection patterns.
- (3) More strata/PSU's, less bias in BRR variances.

Caveat: superpopulation model oversimplifies attributes by PSU.

References

- 1. Fay, R. (1984) ASA, SRMS Proc. pp. 495-500.
- 2. Fay, R. (1989) ASA, SRMS Proc. pp. 212-217.
- 3. Kish, L. and Frankel, M. (1970) JASA.
- 4. Krewski, D. and Rao, J.N.K. (1981) Ann. Statist.
- 5. Oh, H. and Scheuren, F. (1983) paper in: *Incomplete Data in Sample Surveys*, vol. 2, 143-184.
- 6. Särndal, C.-E. and Lündstrom, S. (2005) *Estimation in Surveys with Nonresponse*. Wiley.
- 7. Slud, E. and Bailey, L. (2007) FCSM