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OUTLINE

O. Background – Motivation from ASPEP & previous work

I. Intro with/without Sampling, Weights, and homoscedastic-

error Linear Regression in substrata

II. MSE benefits of pooling – unconditional or conditional on X

III. Bootstrap Variance for Decision-Based Estimator

IV. Other variance estimators ...
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Background

Annual Survey of Public Employment and Payroll (ASPEP)

• response variables Y relating to full and part-time employment

in Government units

• stratified design by State and 4 government ‘Types’

• strata for Subcounty and Special District further subdivided

into small and large substrata by total-payroll size variable

• sampled PPS within strata, subsampled within small-substrata
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Model-Assisted Regression Estimation

• predictor variable Xi : same as response variable Yi ,

but taken from previous Government Census

(2007 Response, 2002 Predictor in dataset analyzed)

• Totals by substratum t
(sm)
X , t

(lg)
X known

• positive size variable Zi , PPS stratum weights wi

• Separate estimation from 2 substrata t̂
(sm)

Y,reg + t̂
(lg)

Y,reg

• versus pooled estimator t̂
(pool)

Y,reg from combined substratum
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Decision-Based Estimation

(Hypothesis-test-based pooling)

Substratum k = 0,1 : size nk, model Yi = ak + bkXi + ε
(k)
i

Combined: size n0 + n1, model Yj = α + βXj + εj

Combination Rule: pool if |̂b0 − b̂1| ≤ 1.96 · SE

GREG Estimators, Variances PPSWR or PPSWOR

JSM 2011 4

USCENSUSBUREAU



Part 1, Research Issue: Is there an MSE Benefit from sub-

stratum collapsing, even if a single regression model holds ?

Levels of complexity

• Sample size, large vs. small (Large in Shao’s talk)

• iid sampling vs. biased sampling vs. Survey

• Linear additive-error regression vs. General model
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Non-survey, Linear Regression Case

Within Substratum k = 0,1, Yi ∼ N (ak + bkXi, σ2
k) iid data

Sample nk , with known µk,x substratum mean of Xi and

known proportion λk (interpretation: Nk/(N0 + N1) )

Objective: from 2-substratum (Xi, Yi) data, estimate Y-mean

E(Y ) = µY = λ0 (a0 + b0µ0,x) + λ1 (a1 + b1µ1,x)

For simplicity, assume a0 + b0c = a1 + b1c, c known,

e.g., c may be a cut-point in X’s used to split substrata.
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Two Statistics

Least-squares estimators

{
substratum âk, b̂k, k = 0,1

pooled α̂, β̂

T =
1∑

k=0

λk {Ȳk + b̂k(µk,x − X̄k)}

S =
1∑

k=0

λk {Ȳk + β̂(µk,x − X̄k)}

T is unbiased

Bias in S proportional to δ = (b1 − b0)/
√

σ2
0 + σ2

1
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Difficult to Improve Unconditional MSE by Collapsing

Simulate samples as follows (with λk known):

• iid X samples within substrata defined by Xi below/above

cutoff c equal to quantile (usually 0.8, taken =λ), µk,x known

• Yi’s generated by equal-bk linear regressions with normal errors

in substrata, γ = σ2
0/(σ2

0 + σ2
1)

For each pair of substratum-k samples (Xi, Yi) of size nk, k =

0,1 find (T −µY )2, (S −µY )2, Compute averages = MSE’s,

also the S-bias multiple of δ.
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Table of MSE’s at δ = 0, & Breakeven δ∗

λ = .8 = quantile for cutoff; simulations with R = 5000

Dist. of X n0 n1 γ rel∆MSE δ∗
N (4,1) 100 50 .5 .0094 .0621

50 30 .0197 .1246
40 20 .0261 .1624

N (4,1) 100 50 .25 .0129 .0567
50 30 .0236 .1053
40 20 .0362 .1502

Expon(1) 100 50 .25 .0126 .0266
50 30 .0245 .0515
40 20 .0375 .0740

Lognorm(0,1) 100 50 .25 .0119 .0079
50 30 .0384 .0214
40 20 .0444 .0249
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Idea: next consider Conditional MSE’s

MSE(T |X) versus MSE(S|X)

Notations: X̄k , S2
k,x stratum sample mean, var

∆ =
1∑

k=0

λk (µk,x − X̄k)

D = (n0 − 1)S2
0,x + (n1 − 1)S2

1,x +
n0 n1

n0 + n1
(X̄0 − X̄1)

2

Conditional Bias E(S |X) − µY = δ[λ1(X̄1 − µ1,x) +

+
∆

D
((n1 − 1)S2

1,x + (c − X̄1) (X̄0 − X̄1)
n0 n1

n0 + n1
]
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Conditional Variance Formulas

Var(T |X) =
1∑

k=0

λ2
k

σ2
k

nk
(1 +

nk (µk,x − X̄k)
2

(nk − 1)S2
k,x

)

Var(S|X) =
1∑

k=0

σ2
k

nk
(λk + (2k − 1)

n0 n1

n0 + n1
(X̄0 − X̄1)

∆

D
)

+ ((n0 − 1)S2
0,x σ2

0 + (n1 − 1)S2
1,x σ2

1)
∆2

D2
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Are there aspects of X data that can tell us when

conditional MSE improvements are substantial ?

1st Graph looks at 1000 simulated LogNorm(0,1) samples

plots conditional MSE improvement 1 − MSE(S)/MSE(T)

versus max of abs(rank-500) of X̄k − µk,x, k = 0,1

(normal linear regressions with σ2
1 = σ2

0 )

2nd Graph: conditional MSE improvement 1−MSE(S)/MSE(T)

versus rank of X̄1 − µ1,x ( σ2
1 = 3σ2

0 )

Note: occasional improvements up to 40-60% !!
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Tentative Conclusions, Part 1

• Meaningful MSE improvements due to hypothesis-test-based
collapsing of substrata is not possible in large samples

• Unconditional MSE improvements of more than a few percent
seem not to be possible in moderate and small samples

• Useful conditional MSE improvements of S over T do seem
possible if substrata are combined only when X̄k − µk,x is large
(usually for k = 1). Best form of decision-based estimator still
not clear.

These statements have been confirmed also in PPS
survey-sampling setting. Conditional improvements
may diminish for some PPS weights.
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Part 2: Can Bootstrap or some other method accurately
estimate Variance of the decision-based estimates ?

Recall form of decision-based estimator t̂Y,dec

=





∑1
k=0 (t̂Y,k + b̂k(tx,k − t̂x,k) if |̂b1 − b̂0| ≤ 1.96 · SE

t̂Y + β̂(tX − t̂X) otherwise

Naive: (Cheng et al. 2010) survey variance estimator of strat-
ified survey regression estimator (combined or two-substratum)
chosen by test.

Bootstrap: (i) resample equiprobably with replacement from
pairs (Xi, Yi) within each substratum;

(ii) apply complete 2-stage definition of t̂
(b)

Y,dec in b’th re-sample,

and (iii) take resulting sample variance of {t̂ (b)
Y,dec}

B
b=1.
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Bootstrapping Hypothesis Tests

(Bickel & Ren 2000, Beran 1986, Shao & Tu 1995)

Bootstrap cannot estimate power of hypothesis tests !

We can see why, in a test for mean µ = 0 based on iid data

Z = {Zi}n
i=1 with finite variances.

Let Z̄
∗(b)
n = sample mean of b’th bootstrap sample from Z:

then bootstrap theory as in Shao and Tu (1995) says: with

probability 1 as n gets large

√
n(Z̄∗(b)

n − Z̄n)
D→ N (0, σ2

Z)
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The ‘natural’ bootstrap estimator of power of the test rejecting

for
√

n |Z̄n| ≥ zα/2 σZ is: π̂B = B−1 ∑B
b=1 I[

√
n |Z̄∗(b)| ≥ zα/2 σZ]

For Z from a law with any mean µ ,

P(
√

n |Z̄∗(b)
n | ≥ zα/2 σZ |Z) → P(|W0 +

√
nZ̄| ≥ zα/2 σZ) |Z)

with W0 ∼ N (0, σ2
Z) (and later indep. W1) indep. of Z.

So when µ = h/
√

n, the expectation of π̂B tends to

P(|W0+
√

n(Z̄−µ)+h| ≥ zα/2 σZ) → P(|W0+W1+h| ≥ zα/2 σZ)

while π̂B ‘should’ estimate the power P(|W1 + h| ≥ zα/2 σZ).
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Consequences for Decision-Based Estimators

We should therefore not expect that straightforward bootstrap

could estimate correctly the probability that t̂Y,dec coincides

with the 2-substratum stratified regression estimator.

Example 1: consider ‘survey’ with substrata chosen SRS (n0 =

50, n1 = 30) from populations N0 = 1600, N1 = 400, in which

Xi ∼ Gamma(4, .1) are iid split at .8 quantile, and Yi = 20 +

1.5Xi + εi in both substrata, εi ∼ N (0,100).

Example 2: same except b1 − b0 = 2, δ = 2/
√

200.

Simulated R = 5000 Monte Carlo Iterations,

with B = 100 bootstrap replications.
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Bootstrap & Monte Carlo Simulation Results in Examples

UnWght.1 UnWght.2 Wght.1 Wght.2

MC.pRej .078 .149 .080 .215
Boot.pRej .208 .268 .216 .318

True tY 162678 163707 160651 161400
avg ty.Dec 162699 163629 160642 161381
avg ty.2str 162692 163620 160645 161405

DecSE.emp 2440.8 2353.8 2542.0 2586.3
DecSE.Naiv 2380.1 2320.5 2437.6 2466.1
DecSE.Boot 2406.5 2344.9 2504.0 2524.1

Naiv.Boot 2420.6 2352.1 2524.1 2555.1
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Conclusions

• In small samples with widely dispersed X it can

pay to collapse substrata.

• Best to collapse when at least one X̄k − µk,x is large.

• Further research needed to explore how to exploit conditional

MSE improvement selectively based on X.

• Bootstrap works adequately for variance in most

cases although clearly not for power

(i.e. of estimating probability of maintaining 2 substrata).

• But bootstrap seems no better than Naive method.
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