
NIH Talk, September ’03

Efficient Semiparametric Estimators

via Modified Profile Likelihood in

Frailty & Accelerated-Failure Models

Eric Slud, Math Dept, Univ of Maryland

Ongoing joint project with Ilia Vonta, Univ. of Cyprus.

The talk is based on joint papers:

(i) about NPMLE Scan. Jour. Stat. to appear 2003.

(ii) about Modified Profile Likelihood, JSPI 2004?

TALK OUTLINE

I. MOTIVATION — Transformation Model Problems

II. APPROACH — Finite-Dimensional Version

III. BACKGROUND LITERATURE — Profile

Likelihood, Frailty & Accelerated Failure Models

IV. FRAILTY CASE (info bounds)

V. ACCELERATED-FAILURE CASE (more details)
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Transformation Survival Models

Variables: Ti Survival times, Discrete Covariates Zi

Ci Censoring Times, cond surv fcn Rz(c) given Zi = z

DATA: iid triples (min(Ti, Ci), I[Ti ≤ Ci], Zi)

Observable processes:

N i
z(t) = I[Zi=z, Ti≤min(Ci,t)] , Y i

z (t) = I[min(Ti, Ci)≥t]

TRANSF. MODEL: ST |Z(t|z) = exp(−G(eβ′z Λ(t)))

G known , β ∈ Rm , Λ cumulative-hazard fcn

PROBLEM: efficient estimation of β.

Special Cases: (1) Cox 1972: G(x) ≡ x

(2) Frailty: unobserved random intercept β0 = ξi , G ≡x

=⇒ G(x) = − log
∫ ∞
0

e−sxdF (s)

(3) Clayton-Cuzick 1986: G(x) ≡ 1
b log(1 + bx)
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Cox-Model Case , G(x) = x

ST |Z(t|z) = exp(−eβ′zΛ(t)) , hT |Z(t|z) = eβ′zλ(t)

is the Proportional or Multiplicative Hazards model.

Frailty

If β ′Z covariate has added to it an unobservable

random-effect intercept log ξ called frailty,

P (T > t |Z = z) = Eξ( exp(−ξ eβ′zΛ(t)) ≡ exp(−G(eβ′zΛ(t)))

In famous Clayton-Cuzick (1986) frailty model

example, take ξ ∼ Gamma(b−1, b−1), leading to

ST |Z(t|z) = (1+beβ′zΛ(t))−1/b , hT |Z(t|z) =
eβ′zλ(t)

1 + beβ′zΛ(t)

Why are these ‘Transformation Models’ ?

(Recall cum. haz. at failure is Expon(1) variate V.)

G( eβ′Z Λ(T ) ) = V

or for G known, but β, Λ unknown,

log Λ(T ) = log G−1(V ) − β ′Z
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‘Accelerated-Failure’ Models

These are also Transformation Models. Covariates now

have an additive effect on transformed time-variable:

T0 is ‘neutral’ individual’s failure-time

g a (known) ‘measurement scale’

survival fcn of g(T0) unknown and equal to K(et).

Now suppose

g(T ) = β ′Z + g(T0)

Then ST |Z(t|z) = P (g(T ) > g(t) |Z = z)

= P (g(T ) > g(t) + β ′z) = K(eβ′z+g(t))

has transformation-model form, for K unknown, g

known (often equal to log).

Note: this is the same as the transformation model

log Λ(T ) = log G−1(V ) − β ′Z

for frailty if Λ were known and G unknown !
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Finite-dimensional Case

Xi, i = 1, . . . , n iid ∼ f (x, β, λ),

β ∈ Rm, λ ∈ Rd unknown , with true values (β0, λ0)

logLik (β, λ) =
n

∑

i=1
log f (Xi, β, λ)

Profile Likelihood = logLik (β, λ̂β) with

restricted MLE λ̂β = arg maxλ logLik (β, λ)

Min Kullback-Leibler Modified Profile Approach

(Severini and Wong 1992)

K(β, λ) ≡ −Eβ0,λ0
( log f (X1, β, λ))

= −
∫

{log f (x, β, λ)} f (x, β0, λ0) dx

Define: λβ = arg maxλ K(β, λ)

Then: λ̃β estimates curve λβ

Candidate Estimator

β̃ ≡ arg maxβ logLik (β, λ̃β)
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Information Matrix : I(β, λ) =







Aβ,λ Bβ,λ

B∗
β,λ Cβ,λ







= −
∫







∇⊗2
β log f (x, β, λ) ∇2

βλ log f (x, β, λ)

∇2
λβ log f (x, β, λ) ∇⊗2

λ log f (x, β, λ)





 f0(x)dx

Note that by definition of K and implicit (total)

differentiation

−∇T
β [∇′

λ K(β, λβ))] = B + C ∇′
β λβ = 0

The usual Information about β for this model, defined

(as in the Cramer-Rao Inequality) as inverse of the min-

imum variance matrix for unbiased estimators of β, is

Aβ0,λ0
− B∗

β0,λ0
C−1

β0,λ0
Bβ0,λ0

Equivalently, to test β = β0, denoting ‘restricted MLE’

λ̂r as maximizer of logLik (β0, λ), efficient test-statistic

is
1√
n

[

∇βlogLik (β0, λ̂r) − B∗
β0,λ̂r

(C∗
β0,λ̂r

)−1 ∇λ logLik (β0, λ̂r)
]

Neyman (1959) indicated that the same efficiency for

test-statistic can be obtained much more generally, with

λ̂r replaced by ‘preliminary’ estimator consistent for λ0

at rate oP (n−1/4).
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Key mathematical features of the modified profile

approach via β̃, λ̃β are:

• the technical convenience of restricting attention to

nuisance parameters such as hazards or density func-

tions which satisfy smoothness restrictions;

• replacement of operator-inversion within (blocks of)

the generalized information operator by differentia-

tion of the Kullback-Leibler minimizer, since

∇′
β λβ = −C−1 B and the semiparametric

Information about β is

J (β0, λ0) = Aβ0,λ0
− (∇∗

β λβ0
)∗ Cβ0,λ0

(∇∗
β λβ0

)

and

• there is no need for high-order consistency of esti-

mation of λ, when consistent estimators of K-L

minimizers λβ and their derivatives with respect

to structural parameters are available.

Whether dimension of nuisance parameter is finite or

infinite, under regularity conditions:

√
n (β̃ − β0)

D≈ N (0, (J (β0, λ0))
−1)
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Semiparametric Case (λ ∞-dim)

Kullback-Leibler Functional

K(β, λ) = −
∫

( log f (x, β, λ)) f (x, β0, λ0) dx

Define

λβ = arg max λ K(β, λ)

to satisfy: ∇λ K(β, λβ) = 0

Under minimal regularity conditions :

(β, λβ) is a least-favorable nuisance-parameterization

Substitute preliminary estimators β̃0, λ̃0 (usually

involves density-estimator for λ0), into λβ formula to

get estimator λ̃β.

Then maximize over β within

logLik (β, λ̃β) =
n

∑

i=1
log fX(Xi, β, λ̃β)
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∞-dim Examples

(I). Cox model.

For qz(t) = pZ(z)Rz(t) exp(−ez′β0Λ0(t)), can solve

uniquely for:

Λβ(t) ≡
∫ t

0
λβ(s) ds =

∑

z qz(x) ez′β0 λ0(x)
∑

z ez′β qz(x)

Let λ̃0 be a consistent density estimate of λ0(x) (eg by

smoothing and differentiating the Nelson-Aalen estimator

on data in a z = 0 data-stratum.) Estimate qz(t) by

kernel-smoothing the at-risk process Yz(t)/n,

λ̃β(t) =
n

∑

i=1
eZ ′

i β0 A(
t − Ti

bn
) λ̃β0

(Ti) /
n

∑

i=1
eZ ′

i β0 A(
t − Ti

bn
)

where A is a smooth cdf (kernel) and bn a bandwidth

parameter decreasing slowly to 0 as n → ∞.

NB. In this example, any β̃ estimator pro-

duced in this way collapses to the usual Cox

Max Partial Likelihood Estimator !
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(II). Transformation/Frailty Models

In the general G transformation model case, must as-

sume for some finite time τ0 with Λ0(τ0) < ∞ that all

data are censored at τ0.

In this model, Slud & Vonta (2003) characterize the

K-optimizing hazard intensity λβ in its integrated form

L = Λβ =
∫ ·
0 λβ(x) dx, through the second order ODE

system:

dL

dΛ0
(s) =

∑

z ez′β0 qz(s) G′(ez′β0Λ0(s))
∑

z ez′β qz(s) G′(ez′βL(s)) + Q(s)

dQ

dΛ0
(s) =

∑

z
ez′β qz(s)

G′′

G′ |ez′βL(s) ·

(ez′β0 G′(ez′β0Λ0(s)) − (ez′β G′((ez′βL(s))
dL

dΛ0
(s))

subject to the initial/terminal conditions

L(0) = 0 , Q(τ0) = 0

Slud and Vonta (2002) show that these ODE’s have

unique solutions, smooth with respect to β and dif-

ferentiable in t, which (with λβ ≡ L′) minimize the

functional K(β, λβ) as desired.
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Consistent preliminary estimators λ̃β can be developed

by substituting for β0, Λ0 in those equations (smoothed

with respect to t) consistent preliminary estimators.

Punchline: new estimator β̃ = arg maxβ logLik (β, λ̃β)

is efficient !

Software for these estimators so far ‘not ready for

prime time’ because of need for general-purpose two-

point boundary value problem for ODE, but has been

used to generate formulas for Semiparametric Infor-

mation.

That is technically easier because it only involves the

adjoint ODE system obtained by differentiating the

one above at the true values (β0, λ0) with respect to a

parameter Q(0).
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Censored Linear Regression

Censored linear regression model (usually, for log-survival

times) assumes εi independent of (Zi, Ci) in

Xi = βtr Zi + εi , Zi and εi independent

Data: iid triples (Ti, Zi, ∆i),

Ti = min(Xi, Ci) , ∆i = I[Xi≤Ci]

Unknown parameters: β , λ(u) ≡ F ′
ε(u)/(1−Fε(u))

Step 1. Preliminary estimator β̃0 as in Koul-Susarla-

van Ryzin (1981) by regression

∆i Ti / ŜC|Z(Ti |Zi) on Zi

Generally, ŜC|Z a kernel-based nonparametric regres-

sion estimator (Cheng, 1989). If Zi, Ci independent,

use Kaplan-Meier ŜKM
C (Ti) .

Step 2. λ̃0 estimated by kernel-density variant of

Nelson-Aalen estimator (Ramlau-Hansen 1983), with ker-

nel cdf A(·), bandwidth bn ↗ ∞ slowly enough:
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λ̃0(w) =
1

bn

∫

A′(
w − u

bn
)

∑

i dNi(u + Z ′
iβ̃0)

∑

i I[Ti≥u+Z ′
iβ̃0]

=
n

∑

i=1
∆i A

′(
w − Ti + Z ′

iβ̃0)

bn
) /

n
∑

j=1
I[Tj≥Ti+(Zj−Zi)′β̃0]

Step 3. Next use K-L functional to find:

λβ(t) ≡ ∑

z
qz(t+z′β) λ0(t+z′(β−β0)) /

∑

z
qz(t+z′β)

Step 4. Then define λ̃β by substituting λ̃0 into

n
∑

i=1
A(

Ti − t − Z ′
iβ

bn
) λ̃0(t+Z ′

i(β−β̃0)) /
n

∑

i=1
A(

Ti − t − Z ′
iβ

bn
)

and Λ̃β by numerical integral of λ̃β over [0, t].

Step 5. Finally substitute these expressions into

logLik =
n

∑

i=1
{∆j log λ̃β(Tj − Z ′

jβ) − Λ̃β(Tj − Z ′
jβ)}

and maximize numerically.
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