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Abstract. We survey the problem of choosing an

orthonormal basis for representing waveforms observed

under varying experimental conditions. When the distri-

bution of waveform ordinates is Gaussian, this is a variant

of classic Principal Components and Factor Analysis sta-

tistical models. Interesting mathematical issues arise in

• formulating models in terms of identifiable param-

eters, which may lie in manifolds rather than open

Euclidean-space regions,

• finding an appropriate asymptotic framework, due to

the comparable numbers of cross-classifying variables

and replicate waveforms within each category, and

• numerically computing model estimates.

These problems will be illustrated in terms of real data

involving transverse cross-sectional ultrasound pictures of

the human tongue during speech.

Research joint with my (former) students

Yang Cheng and Sophie (Hsiao-Hui) Tsou.
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Formal Data Structure

Fix grid of x-coordinates x = x1, . . . , xp. Observe

Y(r,j) ∈ Rp , r = 1, . . . , R, 1 ≤ j ≤ J

corresponding to discretized waveforms (xi, Y
(r,j)
i ).

Indices r for pure independent replicates.

Indices j for categorical cross-classifying labels.

Problem

To use data to represent all labelled curves with respect

to an orthonormal basis consisting of constant level 1 plus

q additional columns formed into p× q matrix Λ.

Objectives :

• dimension-reduction (q � p),

• identification of interpretable basis

(columns of Λ below),

• assessment of necessary category-specific differences

(nonconstancy of a(j), b(j) below, over j).

Model error-variances may or may not be nuisance

parameters .
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Models & Parameterization

Generalized factor-analysis model

Y(r,j) = µ(j) 1 + Λ f (r,j) + ε(r,j)

∼ N
(
µ(j) 1 + Λ a(j) , Λ diag(b(j)) Λ′ + diag(ψ(j))

)

1, ε(r,j), ψ(j) ∈ Rp

f (r,j), a(j), b(j) ∈ Rq

f (r,j) ind∼ N (a(j), diag(b(j))) , ε(r,j) ind∼ N (0, diag(ψ(j)))

Columns Λ(k) , k = 1, . . . , q of Λ are basis for

expanding all centered wave-forms

(Ip − 11′)Y(r,j)

Scaling coefficients f
(j,r)
k have a systematic constant part

a
(j)
k and a random N (0, b

(j)
k ) part (iid over r)

Unknown parameters

ϑ ≡ ( Λ, {µ(j), a(j), b(j), ψ(j)}J
j=1 )

high-dimensional. In tongue-data example:

p = 100, q = 2, J = 66, R = 30
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Why Random Coefficients & Independent Errors ?

Classic Factor Model : J = 1, R large, a ≡ 0, µ = 0.

Measurements were p psychological test scores (e.g.,

IQ battery); many replicates r for different test sub-

jects. Objective was to justify single (q = 1 or as small

as possible) composite score on which to project ‘general

intelligence’. Coefficients f (r) have meaning for individ-

uals, but psychometric model describes the population.

Independence of model-errors ε
(j,r)
i across i is a re-

strictive assumption, needed for model identifiability (ie

unique specification) of parameters.

Common Principal Components, Fleury 1986 :

same as factor model except J > 1, to assess adequacy

of same basis matrix Λ for all categories j.

Waveform Models : µ(j), a(j), Λ of direct interest.

Perhaps also the comparison of the size of category non-

random versus random effect sizes (a(j) vs. b(j)).

Models with a, b first studied in Yang Cheng the-

sis (2004); maybe because of different motivation from

psychometrics, or because computational obstacles have

only recently been easy to overcome.
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Identifiability of Parameters

Model: Y(r,j) = µ(j) 1 + Λ f (r,j) + ε(r,j)

Since f
(r,j)
k ∼ N (a

(j)
k , b

(j)
k ), directions Λ(k) enter

mean signal E(Y(r,j)) and covariance Var(Y(r,j)).

Parameter Space: assume ϑ ∈ Θ, i.e.

ϑ = ( Λ, {µ(j), a(j), b(j), ψ(j)}J
j=1 ) satisfies:

Λ′ Λ = Iq , Λ′ 1 = 0 , 1st nonzero elt > 0 in each Λ(k)

µ(j) ∈ R , a(j) ∈ Rq , b(j) ∈ Rq
+ , ψ(j) ∈ Rp

+

∑J
j=1 b

(j)
k strictly ↘ in k

Proposition 1 (Identifiability, Cheng 2004, Tsou 2005)

There is a 1-to-1 correspondence between parameters

θ ∈ Θ and probability laws for (Y(j,r), 1 ≤ j ≤ J) .

The case J = 1, a = 0 is the hardest one. Third Θ

condition is just one possible way to order the columns

of Λ uniquely.

Still some unsolved issues of uniqueness of (Λ,b, ψ)

being determined from Λ diag(b) Λ′ + diag(ψ) .
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Profile Likelihood Estimation

Restrict for simplicity to case J=1, suppress index j,

and take ψ = σ2Ip. Parameters ϑ ≡ (ϑ1, ϑ2) =

(Λ, (µ, a,b, σ2)) estimated by maximizing log-likelihood:

− R(p− q)

2
log σ2 − 1

2

R∑

r=1

q∑

k=1

1

bk + σ2
(Λ(k)′Y (r) − ak)

2

− R

2

q∑

k=1
log(bk+σ

2)− 1

2σ2

R∑

j=1
(‖Y (r)−µ1‖2−‖Λ′Y (r)‖2)

Can maximize first, explicitly and uniquely, over

ϑ2 = (µ, a,b, σ2)

as function ϑ̂2(Λ). When J > 1, maximization

decouples over different parameters (µ(j), a(j),b(j), σ2
j ).

Result after substituting back into log-likelihood is

Profile log-Likelihood lP (Λ,Y) =

−
R(p − q)

2
log σ̂2 −

R

2

q∑

k=1
log(Λ(k)′ SY Λ(k)) −

Rp

2

where (using notation v = v⊗2)

Ȳ =
1

R

R∑

r=1
Y (r) , S2

Y =
1

R

R∑

j=1
(Y (r) − Ȳ )⊗2

σ̂2 =
1

p− q
{tr((SY + Ȳ ⊗2) (Ip − ΛΛ′)) − p−1(1′ Ȳ )2}
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Computational Issues

Approaches to maximization:

• direct optimization of logLik over ϑ does not work

well in realistically large problems;

• maximization of lP (Λ,Y) almost as difficult

(dim = pq − q(q − 1)/2);

• EM algorithm (Cheng 2004 thesis, a(j) 6= 0, general

J > 1, but ψ(j) = σ2
j1 )

idea is to maximize iteratively by finding

ϑk+1 = arg maxϑ Eϑk
( log Lik(Y, f , ϑ) |Y)

easy to implement analytically but converges slowly;

• profile logLik approach solving for Λ as function of

general ψ when a = 0.

Implemented in Tsou 2005 thesis, for J = 1;

Newton-Raphson optimization over ψ, dim = p

• slow convergence in problems with a(j) = 0 found

in Tsou 2005 thesis to be associated with ‘boundary’

solutions (some ψ
(j)
k = 0)

• convergence can be speeded up by projecting from

Rp down to eigenspace for largest singular values of

S2
Y ≡ 1

JR

J∑

j=1

R∑

r=1

(
Y(j,r) − Ȳ (j)

)⊗2
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Maximum Likelihood Asymptotics, R → ∞

Standard statistical theory shows in regular finite-dim

Euclidean parameter problems that as sample-size (iid

replicate number R) goes to ∞ MLE satisfies
√
R (ϑ̂ − ϑ0)

D−→ N (0, I−1)

as long as I = −Eϑ0(∇⊗2logLik (ϑ0)) is non-singular.

In Factor models, orthonormality constraints on Λ

columns make the nontrivial verification take the form

(Cheng 2004): for some γ > 0, and all large R :

1

R
{lP (Y,Λ0) − lP (Y,Λ)} ≥ γ · ‖Λ′Λ0 − Iq‖2

This is a positive-definite Information verification

for the Profile Likelihood based on parameter with val-

ues in a manifold.
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Steps in Checking Information Nonsingularity

Formula for a.s. limit of normalized profile logLik :

gp(Λ, ϑ0) = −p −
q∑

k=1
log

(
Λ(k) ′ Λ0B0Λ

′
0Λ

(k) + σ2
0

)

−(p−q) log



σ

2
0 +

1

p− q
tr( (Iq − Λ′

0ΛΛ′Λ0) (a⊗2
0 + B0) )





expressed in terms of T = Λ′Λ0 as g∗P (T, ϑ2,0) =

C −
q∑

k=1
log(

q∑

l=1
bl0 T

2
kl + σ2

0 ) − (p − q) log ( (p− q)σ2
0

+
q∑

k=1
(a2

k0 + bk0) −
q∑

k=1

q∑

l=1
bl0 T

2
kl −

q∑

k=1
(

q∑

l=1
al0Tkl)

2 )

Here K = (T 2
kl)

q
k,l=1 is doubly sub-stochastic since

Λ, Λ0 have columns which form orthonormal bases of

(possibly different) q-dimensional subspaces of Rp.

Can show (calculus inequalities), for T near Iq :

g∗P (Iq, ϑ2,0) − g∗P (T, ϑ2,0) ≥

−
1

σ2
0

q∑

k=1

q∑

l=1

bk0 bl0
bk0 + σ2

0

(T 2
kl − δkl) + c‖K − Iq‖2
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Steps to Check Nonsingularity, cont’d

Now the first term is shown ≥ γ Σq
k,l=1 |T 2

kl − δkl|
via a Markov-chain combinatorial Lemma:

Lemma: Let M be any doubly-stochastic p×p matrix

with nonnegative elements, whose upper-left q×q block

is not the identity matrix Iq, where q ≤ p. Then for all

σ2 > 0 and b ∈ Rq such that b1 > b2 > · · · > bq > 0,

q∑

k=1

q∑

l=1

bkbl
bk + σ2

Mkl <
q∑

k=1

b2k
bk + σ2

Then the proof of quadratic lower bound in norm for

g∗P (Iq, ϑ2,0) − g∗P (T, ϑ2,0) is completed by checking (via

sub-stochasticity)

‖T − Iq‖2 ≤
q∑

k=1

q∑

l=1
|T 2

kl − δkl|
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‘Two-Index Asymptotics’

Previous slide relates to standard asymptotics in which

J is fixed but R → ∞. This is artificial in real exam-

ples. Both indices get large in large projects !

Two features of large cross-classified datasets — the

subject of my most recent graduate research seminars —

which lead to new phenomena:

• independent data Y (j,r) ∼ f (y, Λ , ϑ
(j)
2 ) dis-

tributed with parameter Λ common to all, but

ϑ
(j)
2 decoupled (for fixed Λ) in different groups j ;

and

• both R , J → ∞ with R = O(J)

Since overall dataset size is of order N = RJ this says

replication numbers R are O(
√
N ) .

Paper of Li, Lindsay, & Waterman (2003, JRSSB) has

result which says in this two-index asymptotic context:

MLE’s are consistent but may no longer be asymptoti-

cally efficient (i.e., no longer have minimum possible vari-

ance); and known ‘projected score estimating equation’

correction restores efficiency, as long as J = O(R1+δ).
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However

can check using Li, Lindsay, & Waterman (2003) results

that in fact, for normal-errors factor model, even when

J = O(R1+δ),

√
RJ (Λ̂ − Λ0)

D−→ N (0, I−1
Λ0

)

They showed this with a generally nonzero mean

which can be computed in terms of projections of scores.

Key fact here is that the mean continues to be 0 which

is a consequence of checking that the full-log-likelihood

score terms with respect to Λ are orthogonal in this

model to all score terms with respect to the other ϑ2

terms and to all squares and products of ϑ2 score terms.
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Tongue Data Example

Data example drawn from long-term NIH project of

Dr. Maureen Stone of UM Dental School, on which stu-

dents Yang Cheng and Sophie Tsou also worked.

Data consisted of cross-sectional ultrasound-derived im-

ages of human tongue during speech, with about 100

(x, y) coordinate pairs for each of 6 speakers and

11 vowel sounds (J = 11 × 6 = 66) with replications

based on separate sessions, images within session, and

(S vs L) consonant bracketing (R = 3 × 5 × 2 = 30).

Pictures and Table taken from Tsou 2005

thesis.

Pictures consist of plotted Principal Components (eigen-

vectors of ΣY ) overlaid with estimated columns (q = 2)

of Λ .

Table shows estimated scale-factors αj in speaker and

sound estimated variances σ2
j , except that Table has j

doubly indexed through a for vowel sound and s for

speaker.
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Relation to R. Beran’s REACT Approach

"risk estimation and adaptation after

coordinate transformation" (JASA 2000)

This is a coefficient-shrinkage approach to parsimo-

nious PCA regression, devised to minimize risk

(1) when interpretability of resulting basis is not a pri-

mary issue, and

(2) when cross-classification of the data (along with the

desire to find the same basis used to represent data

in different experimental regimes) is not a primary

issue.

In Beran’s setting, the main issue to to keep the basis

from growing too large, while my objective is to treat

cases where a common small basis will be adequate !
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