Stat 400, Summer I June 24, 1996

Handouts on Transformation of Random Variables & Simulation

I. TRANSFORMATION OF CONTINUOUS R.V.’S

The main idea of this topic is that a known function Y = g(X) of a continuously
distributed random variable X with known density function fx(¢) is itself a continuous
random variable with a distribution function Fy and density function fy(y) which we
can figure out explicitly. We use this in two different ways: (1) to generate interesting
new probability models cheaply from old ones, in a way which leads to many natural
applications, and (2) to show that any continuous random variable with known cdf can be
expressed as a known function of a Unif|0, 1] random variable, and so can be simulated on
a computer using as building-block an algorithm for generating Unif[0, 1] pseudorandom
variables on the computer.

We restrict attention to functions g which are differentiable and strictly monotonic
(which means either always increasing, with positive derivative, or always decreasing, with
negative derivative) on the range (a,b) on which the density fx is positive. (That
interval, which may be infinite in one or both directions, is the range of ‘possible values’
for the random variable X. First, suppose ¢ is strictly increasing. That means,
for any two real numbers z,z € (a,b)

z<uw if and only if  g(z) < g(x)

To every value y € (g(a),g(b)), there is one and only value z € (a,b) for which y = g(z2),
and we denote this value by z = g~ 1(y). (You should review these ideas under the heading
of ‘Inverse Functions’ in your calculus book if this is not familiar.) Therefore, even if we
replace y by a random variable value Y and then put z = X =g~ }Y), 2 = g~ !(y) in
the previous displayed equation, we have

Y <y if and only if X <x=g '(y)
from which it follows that

Fy(y)=PY <y)=PX <g ') =Fx(g ' (v)) (1)

Equation (1) shows how to find the distribution function of Y = g(X) in terms of
an increasing function ¢ and the distribution function of X. The correct distribution
function formula in the case of a random variable Y = ¢g(X) with decreasing function g
is:

Fy(y)=P(Y <y)=P(X 297" (y) =1-Fx(9~'(v)) (1)
Here are some examples (of the increasing-g case):

Example A. Lognormal distribution Suppose that X ~ N(u,0?), and Y = g(X) =

exp(X). Then Y is called lognormal with parameters pu, o2. Sovling y = g(x) = €
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for y gives z = g7 1(y) = log(y). Equation (1) shows that Fy(y) = Fx(log(y)) =
®((log(y) — p)/o). Differentiating this formula by means of the chain rule gives, for
positive values 1y,

(log(y) — u)z)
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Ezample B. Weibull distribution Suppose that X ~ FEzpon()\) and that for a fixed
constant o > 0, Y = g(X) = XV sothat y = g(z) = '/ 1is solved to give
g (y) = y*. Then, since Fx(z)=1— e ** Equation (1) and the chain rule show for
positive values y that

i) = Fy (o) = 32 [1 = exp (= 29°)] = X" exp (= Xy”)

Note that the parameters here agreee with those in the book only if we take A = g~.

Ezample C. General function of Uniform. Now take X ~ Uniform[0,1], sothat Fx(z) =
x for 0 <x <1, and put g(z) = G~ 1(x), where G is the specified distribution function
for which we want to produce an associated random variable. Put Y = g(X) = G~}(X).
Note that ¢g~!(y) = G(y), since the inverse of the inverse of a function G is the function
G itself. Then we apply Equation (1) again to find that this random variable Y has
distribution function given by

Fy(y) = Fx(G(y)) = G(y) (2)

The interpretation of formula (2) is that if we have a Uniform|0, 1] random variable X
produced or ‘simulated’ for us on the computer, and if we have implemented a FUNCTION
subroutine to calculate g(-) = G71(:), then ¢(X) is a random variable with the desired
cdf G.

We give two more simple examples to illustrate the general idea that for many inter-
esting random variables whose probability distributions depend upon parameters, there is
a simple function of the random variable whose distribution no longer depends upon those
parameters.

Ezample D. Standardizing Normal RV’s. We saw in class the operation of ‘standardizing’
a random variable X ~ N(u,0?). Here is the same idea from the perspective of equation
(1). Now we define the linear ‘standardizing’ function g(z) = (x—pu)/o. Clearly y = g(z)
is solved in terms of y to give # = g~ '(y) = p+ o -y, and formula (1) says that the
standardized rv Y = (X — p)/o has cdf given by

Fy(y) = Fx(p o -9) = o (LFIDZ0) _ gy

So Y is a standard normal rv.



Ezample E. Rescaling Exponential(X). Let X ~ Exzpon(X), g(x) =X -z, Y = X X.
Then Fx(z)=1—e** g~ 1(y) =y/), and for positive y, by Equation (1)

Fy(y) = Fx(y/\) =1— e @W/NA =1 _ v

which means that the rescaled variable Y is Expon(1) distributed. Thus X =Y/ :
to get an Exzpon(A) rv, just take an Fxzpon(l) rv and divide by .

We give one more example which is of interest later on. First, suppose that X is a
standard A(0,1) random variable. Recall that X is symmetric, in the sense that it is
just as likely to take positive values in an interval [z,x + 0] as to take negative values in
the mirror-image interval [—x — J, —z|. Therefore, if we want to find the distribution of
the positive-valued random variable Y = X2, we calculate for positive y (using the same
idea as in deriving equation, but slightly different details because z? is not an increasing
function on the whole — positive and negative — axis)

Fy(y)=P(X?*<y)=P(IX| < y) = P(—/y < X < /i) = (/) — (=)

From this last equation, it follows (using ®'(z) = exp(—2?/2)/v/2n) that
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This last density is a Gamma density with parameters %, %, also called x? or chi-squared
with one degree of freedom.

PROBLEMS ON TRANSFORMATION OF RANDOM VARIABLES

TRAN.1. Show that a Uniform[12,17] random variable can be obtained as a simple
function of a Uniform|0,1] random variable, and find the function.

TRAN.2. Find the cumulative distribution function and the probability density function
of the random variable 3-V?2 41, where V ~ Ezpon(1).



