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Biased Estimation of S? in 2-Stage Cluster Sampling

The object of this handout is two-fold:

(i) to show that the naive estimator s? of the population variance S? of
PSU totals t;, i =1,..., N is biased; but

(ii) to show that nevertheless, the standard estimator (5.25) in Lohr’s book
for the theoretical variance V (t,ns) of the unbiased estimator of the population
total in a 2-stage cluster SRS is unbiased.

Notations are as in Chapter 5 of Lohr’s book: the first-stage SRS sample S
consists of n PSU’s out of the total of N, and the second-stage SRS takes m;
out of M; SSU’s within each of the first-stage sampled PSU’s ¢ € §. Recall that

the PSU totals of attribute values Y;; associated with the j’th SSU in the i’th

PSU are denoted t; = ZJM:1 Y;;, with population total ¢ = Zivzl t;.

Part (i). The naive estimator of S2 = (N — 1)~ 32N (; — t/N)? based on

sampled data is
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We calculate the expectation, first all by evaluating conditionally given & the
expected squares as variances plus squares of expectations :
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The first expression in the last line is just S? because sample variances un-
biasedly estimate population variances in single-stage SRS sampling; and the
second-term integrand for fixed S is given by standard SRS variance formu-
las for the variances of the independent second-stage estimators #;, using the

identity
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Thus we have proved s; is a positively biased estimator of S2, with
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Part (ii). Now recall that the theoretical variance formula — numbered (5.22)
in Lohr’s book — for tyny = (N/n)> ics i is
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and recall also that the second-stage sample variances s? unbiasedly estimate
the corresponding PSU attribute-variances S? given i € S. We show now
that
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is an unbiased estimator of Var(fu,;) . According to formula (*) and the

unbiasedness of s2 for S2 given i€ S, we have E(V(fynp)) =
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which agrees, as asserted, with the formula for Var(f,,;) given above.



