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Biased Estimation of S2
t in 2-Stage Cluster Sampling

The object of this handout is two-fold:

(i) to show that the naive estimator s2
t of the population variance S2

t of
PSU totals ti, i = 1, . . . , N is biased; but

(ii) to show that nevertheless, the standard estimator (5.25) in Lohr’s book
for the theoretical variance V (t̂unb) of the unbiased estimator of the population
total in a 2-stage cluster SRS is unbiased.

Notations are as in Chapter 5 of Lohr’s book: the first-stage SRS sample S
consists of n PSU’s out of the total of N , and the second-stage SRS takes mi

out of Mi SSU’s within each of the first-stage sampled PSU’s i ∈ S. Recall that
the PSU totals of attribute values Yij associated with the j’th SSU in the i’th
PSU are denoted ti =

∑Mi

j=1 Yij, with population total t =
∑N

i=1 ti.
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We calculate the expectation, first all by evaluating conditionally given S the
expected squares as variances plus squares of expectations :
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The first expression in the last line is just S2
t because sample variances un-

biasedly estimate population variances in single-stage SRS sampling; and the
second-term integrand for fixed S is given by standard SRS variance formu-
las for the variances of the independent second-stage estimators t̂i, using the
identity
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Thus we have proved st is a positively biased estimator of S2
t , with
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Part (ii). Now recall that the theoretical variance formula – numbered (5.22)
in Lohr’s book – for t̂unb = (N/n)

∑
i∈S t̂i is
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and recall also that the second-stage sample variances s2
i unbiasedly estimate

the corresponding PSU attribute-variances S2
i given i ∈ S. We show now

that
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is an unbiased estimator of Var(t̂unb) . According to formula (*) and the
unbiasedness of s2

i for S2
i given i ∈ S, we have E(V̂ (t̂unb)) =
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which agrees, as asserted, with the formula for Var(t̂unb) given above.
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