
E. Slud 3/17/08

Stat 705, HW 16 Due Wed. 3/26/08

This problem describes and asks you to implement the EM algorithm for
a balanced two-way mixed-effects normal linear model with block fixed effects
and cluster random effects, and to compare the results of your ML estimation
via EM with the nlm-based iteration which can be made much simpler in this
problem.

Data & Problem Setting. Suppose that an array X = {Xij, 1 ≤ i ≤
B, 1 ≤ j ≤ M} of random variables is to be observed, quantitative responses
in an experiment where i indexes a fixed number B of blocks, and j indexes
‘clusters’ the number M of which is large and growing. The distributional
assumption is

Xij = αi + Uj + εij (1)

for all indices i, j, where the errors U and ε are independent, and

Uj
iid∼ N (0, σu)2 , εij

iid∼ N (0, σ2)

Here the αi are regarded as unknown constant ‘fixed block effect’ parameters,
which the Uj are unobserved ‘random cluster effect’ random variables. (If
the values Uj were also treated as parameters, their number M would grow
proportionately to the total dataset size MB, which would invalidate most
of our large-sample MLE theory.) Thus the unknown parameters, of dimension
B + 2, are

ϑ ≡ (α, σ2
u, σ2) ∈ Θ ≡ RB ×R+ × R+

Problem (to be handed in): Simulate 10 datasets of the type just described,
with B = 10, M = 40, and σ2

u = 2, σ2 = 1, and αi generated (once, kept
the same for all 10 simulations) as iid Uniform(8, 12) random variates. For
each of the datasets, find the maximum likelihood estimators ϑ̂ in two ways,
by numerical iteration using nlm on the Likelihood, and by the EM algorithm
obtained by treating U = {Uj , j = 1, . . . , M} as missing data (Little and
Rubin, Statistical Analysis with Missing Data, 2nd ed. 2002). Make
sure that the ML estimators you obtain for both methods are the
same, and verify that each EM iteration increases the log-likelihood
expression (3).

The computing formulas for both the maximum likelihood calculation and
the EM iteration are derived on the following pages. The ML simplifies in this
problem because the estimators α̂i = X̄i· are actually given in closed form and
can be substituted into the log-likelihood, leaving only a 2-dimensional numerical
maximization over σ2 and σ2

u.
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Maximum Likelihood Calculation

The ML estimators can in fact be found in closed form in this problem, as
we will show, but some care is needed because the data Xij are independent
only in clusters corresponding to the columns X(j) = (Xij)B

i=1 ∈ RB with
multivariate normal distribution expressed in terms of the corresponding column
of the εij array as

X(j) = α + Uj 1B + ε(j)
iid∼ N (α, σ2 IB + σ2

u 1⊗2
B ) (2)

where IB denotes the B × B identiy matrix and 1B the B-dimensional
column vector of 1’s. Now for future reference define

x̄ ≡ 1
B

B∑

i=1

xi , ᾱ ≡ 1
B

B∑

i=1

αi , γ ≡ Bσ2
u

Bσ2
u + σ2

In terms of these notations, we can write the density corresponding to (2) as

fX(j) (x) = (2π)−B/2 σ−B+1 (σ2+Bσ2
u)−1/2 exp

{
− 1

2σ2

(
‖x−α‖2 −B γ (x̄−ᾱ)2

)}

Then it is not hard to check after partial differentiation with respect to αi and,
separately, with respect to σ2

u and to σ2, that the observed-data log-likelihood
logLik(ϑ,X) (after subtraction of a constant not involving ϑ)

− M (B − 1)
2

logσ2 − M

2
log(σ2+Bσ2

u)− 1
2σ2

∑

i,j

(Xij−αi)2 +
Bγ

2σ2

∑

j

(X̄·j−ᾱ)2

(3)
is maximized uniquely over ϑ = ϑ̂ precisely when

α̂i = X̄i· , B σ̂2
u + σ̂2 =

1
M

SSBC , σ̂2 =
SSW − SSBC

M (B − 1)
(4)

Here we have made use of the standard notations

X̄i· =
1
M

M∑

j=1

Xij , X̄·j =
1
B

B∑

i=1

Xij , X̄·· =
1

BM

B∑

i=1

M∑

j=1

Xij

and, with SSW standing for ‘within-block’ and SSBC for ‘between-cluster’ sums
of squares,

SSW =
B∑

i=1

M∑

j=1

(Xij − X̄i·)2 , SSBC = B

M∑

j=1

(X̄·j − X̄··)2

Note that the MLE equations closely resemble the Method-of-Moment or REML
estimators you would have learned in an Analysis of Variance course: indeed,
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those estimators are just as in (4) with M replaced by M − 1 in the denom-
inators in the second and third equations.

Calculations of Explicit E and M steps in the EM algorithm

To obtain the EM iteration explicitly, we begin with the conditional distri-
bution of the missing data given the observed data. As argued in class, first the
independence of (Uj , X(j)) for j = 1, . . . , M , and the ‘sufficiency’ of X̄·j for
Uj regarded as a parameter (with ϑ known and fixed), implies that

fUj |X(u|X) = fUj |X(j) (u|X(j)) = fUj |X̄·j (u|x) ∼ N (γ(x − ᾱ),
γ

B
σ2) (5)

where the last normal-density relation of (5) follows from the fact that Uj and
X̄·j are jointly Gaussian and that the two random variables Uj − γ(X̄·j − ᾱ)
and X̄·j are uncorrelated.

Next, if a parameter ϑ∗ = (α∗, (σ∗
u)2, (σ∗)2) value is fixed with respect to

which conditional expectations are calculated, then by (5),

Eϑ∗(Uj |X) = γ∗ (X̄·j−ᾱ∗) , Eϑ∗(U2
j |X) = (γ∗)2 (X̄·j−ᾱ∗)2 +

γ∗

B
(σ∗)2 (6)

Now the joint log-likelihood of the observed and missing data has the form

− M

2
logσ2

u − MB

2
log σ2 − 1

2
(

1
σ2

u

+
B

σ2
)

M∑

j=1

U2
j

+
B

σ2

M∑

j=1

Uj(X̄·j − ᾱ) − 1
2σ2

B∑

i=1

M∑

j=1

(Xij − αi)2

from which we calculate conditional expectation given X under parameters ϑ∗,
with the explicit E-step result

− M

2
log σ2

u − MB

2
logσ2 − 1

2
(

1
σ2

u

+
B

σ2
)

M∑

j=1

(
(γ∗)2 (X̄·j − ᾱ∗)2 +

γ∗

B
(σ∗)2

)

+
γ∗B

σ2

M∑

j=1

(X̄·j − ᾱ∗) (X̄·j − ᾱ) − 1
2σ2

B∑

i=1

M∑

j=1

(Xij − αi)2 (7)

The M-step consists in finding explicit formulas for the maximizer with respect
to ϑ = (α, σ2

u, σ2) of expression (7). First, it is easy to see that if in each
iteration the parameter ᾱ∗

i is taken equal to X̄i·, then the maximizer α̃i of
(7) has the same value ! Thus there is no loss of generality (and considerable
simplification) in taking the EM estimator of αi = X̄i· in every iteration. As
a result, the quantity (7) to maximize with respect to (σ2

u, σ2) takes the form

− M

2
logσ2

u − MB

2
logσ2 − SSW

2σ2
− M

γ∗

2
(

1
Bσ2

u

+
1
σ2

) (σ∗)2
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− SSBC

2

(
(γ∗)2 (

1
Bσ2

u

+
1
σ2

) − 2 γ∗

σ2

)
(8)

where SSW, SSBC are as defined within our Maximum Likelihood derivation.

Maximizing (8) respectively with respect to σ2
u and σ2 yields the two

unique solutions

σ̃2
u =

1
B

γ∗ (σ∗)2 +
SSBC

BM
(γ∗)2 (9)

σ̃2 =
1

MB

(
SSW + γ∗ SSBC (γ∗ − 2)

)
+

1
B

γ∗(σ∗)2 (10)

Thus, if at the k’th EM iteration we have parameter values α
(k)
i = X̄i· and

(σ(k)
u )2, (σ(k))2, then at the (k + 1)’st iteration the EM estimates are obtained

from equations (9) and (10) as

α
(k+1)
i = X̄i· (11)

(σ(k+1)
u )2 =

(σ(k)
u )2

B (σ(k)
u )2 + (σ(k))2

(
(σ(k))2 +

SSBC · B (σ(k)
u )2

M · (B(σ(k)
u )2 + (σ(k))2)

)
(12)

(σ(k+1))2 = (σ(k+1)
u )2 +

1
MB

(
SSW − 2 B (σ(k)

u )2

B(σ(k)
u )2 + (σ(k))2

· SSBC
)

(13)
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