Statistical Computing with R

Eric Slud, Math. Dept., UMCP

August 30, 2009

Overview of Course

This course was originally developed jointly with Benjamin Kedem and
Paul Smith. It consists of modules as indicated on the Course Syllabus.
These fall roughly into three main headings:

(A). R (& SAS) language elements and functionality, including computer-
science ideas;

(B). Numerical analysis ideas and implementation of statistical algorithms,
primarily in R; and

(C). Data analysis and statistical applications of (A)-(B).

The object of the course is to reach a point where students have some
facility in generating statistically meaningful models and outputs. Wher-
ever possible, the use of R and numerical-analysis concepts is illustrated in
the context of analysis of real or simulated data. The assigned homework
problems will have the same flavor.

The course formerly introduced Splus, where now we emphasize the use
of R. The syntax is very much the same for the two packages, but R costs
nothing and by now has much greater capabilities. Also, in past terms SAS
has been introduced primarily in the context of linear and generalized-linear
models, to contrast its treatment of those models with the treatment in
R. Students in this course have often had a separate and more detailed
introduction to SAS in some other course, so in the present term we will

not present details about SAS, in order to leave time for interesting data-
analytic topics such as Markov Chain Monte Carlo (MCMC) and multi-level
modeling in R.

Various public datasets will be made available for illustration, homework
problems and data analysis projects, as indicated on the course web-page.

The contents of these notes, not all of which are posted currently, and
which will be augmented as the term progresses, are:

1.

© ® N o

10.

Introduction to R
Unix and R preliminaries, R language basics, inputting data, lists and
data-frames, factors, functions.

Random Number Generation & Simulation
Pseudo-random number generators, shuffling, goodness of fit testing.

. Graphics

. Simulation Speedup Methods

Numerical Maximization & Root-finding
(respectively for log-likelihoods and estimating equations)

. Commands for Subsetting

Manipulating Arrays and Data Frames
Spline Smoothing Methods

EM Algorithm

The Bootstrap Idea

Markov Chain Monte Carlo

Metropolis and Gibbs Sampling Algorithms
Connvergence Diagnostics for MCMC

Bayesian Data Analysis applications using WinBugs

Multi-level Model Data Analysis
Linear and Generalized Linear Model Fitting and Interpretation

A few Exercises are contained in these notes, but all formal Homework as-
signments are posted separately in the course web-page Homework directory.

2 Random-Number Generation & Simulation

We already saw a preliminary example of a small simulation, as an illustration
for looping, functions, and the need for vectorization. In the next segment
of the course, we discuss at greater length the strategy and implementation
of simulations of statistical experiments using pseudo-random number
generators. This topic includes first of all the algorithms used to generate
random numbers in R (deterministically); secondly, it includes some of the
goodness-of-fit cross-checks which one would make in checking the quality of
a new random-number generator and which (in modified and simpler form)
it is also good practice to use in checking for the correctness of a simulation;
and third, some of the variance-reduction and speedup algorithms which have
become part of standard practice in simulating random experiments with a
view to calculating probabilities (like type-1 and type-2 errors in hypothesis
tests) which are not large.

2.1 Pseudo-Random-Number Generation

Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin. — John von Neumann (1951)

Anyone who has not seen the above quotation in at least 100
places is probably not very old. — D. V. Pryor (1993)

Random number generators should not be chosen at random. —
Donald Knuth (1986)

You can read about pseudo-random number generators in many places.
The R documentation suggests consulting

Kennedy, W. J. and Gentle, J. E. (1980). Statistical Computing.
Marcel Dekker, New York.

Marsaglia, G. et al. (1973). Random Number Package: “Super-
Duper”. School of Computer Science, McGill University.

the latter of which is the stated source of the R runif random-number
generator. The old standard reference (which has recently been reincarnated

as a paperback) is:

31

Knuth, D. (1981) Seminumerical Algorithms, 2nd. ed. vol. 2 of
The Art of Computer Programming .

and a generally useful book on computational algorithms, including those
related to simulations, is

Press, W. et al. (1986) Numerical Recipes: The Art of Scientific
Computing. Cambridge Univ. Press.

There are also useful survey articles, such as a 1983 International Sta-
tistical Review article by B. Ripley. For fancier theoretical properties, see
a 1992 book (with number-theoretic flavor, and some of the most interest-
ing rigorously proved results) by H. Niederreiter. There are many books,
bibliographies, and software, both in the campus libraries and online. A
“Selected Bibliography of Random Number Generation” can be found on
WWWeb (within MATLAB documentation) at:
www.mathworks. com/access/helpdesk/help/techdoc/math/brrztpq.html

(A) The simplest and most common random number generators: Linear-
Congruential Generators (LCG’s):

Tpi1 = a-xT, +b mod m

(a is called the multiplier, b the addend, m the modulus, usually close
to a word-size, e.g. 232 or 23! —1). With carefully chosen a, the period
will be m if m is apower of 2, m —1 if m is prime (and the latter is
recommended).

Multiplicative, congruential generators [i.e. LCG’s with addend
0] are adequate to good for many applications. They are not
acceptable ... for high-dimensional work. They can be very
good if speed is a major consideration. Prime moduli are best.
However, moduli of the form 2™ are faster on binary computers.
— Anderson (1990)

S. L. Anderson. “Random Number Generators on Vector Super-
computers and Other Advanced Architectures,” STAM Review,
32 (2), pp. 221-251, 1990.

32

An example of a good small multiplier/modulus pair, according to Knuth
(1981) and my own many-years’ experience, is due to G. Marsaglia:

Modulus = 2%, Multiplier = 69069

Authors Park and Miller (S. K. Park and K. W. Miller, “Random Number
Generators: Good Ones are Hard to Find,” Transactions of the ACM, Nov.
1988) recommend :

m=p=2"_-1=2147,483,647, a=16807 =7, b=0

(Period = p—1). Source code (e.g. in Pascal) for this generator is available
as random.f on the Net.

A famously bad LCG example is the combination of multiplier 7° with
m = 232 and a = 0 : if I recollect correctly, this is the one used in the
notorious routine RANDU of an IBM package of subroutines).

(B) What can go badly wrong with linear-congruential RNG’s 7 The
main issue is a number-theoretic property spotted by G. Marsaglia in a fa-
mous article (“Random numbers fall mainly in planes”, 1968 Proc. Nat.
Acad. Sci.): the LCG rule results in sequences which fall along hyperplanes
in some number of dimensions at most (but sometimes much less than) /m.
There are several tests of randomness (mentioned e.g. by Knuth) which test
how finely spaced these hyperplanes are (the "lattice test” of Marsaglia, the
"spectral test” of Coveyou - Macpherson). More generically, test:

e via chi-square, equidistribution in cells of k-tuples
e empirical d.f.’s of statistics arising in simulations
e serial correlation

e relative frequency properties of various permutations

(C) One important source of problems with dynamical RNG’s is too-small
periods. Several constructions have been proposed for ‘shuffling’ RNG’s. The
idea of shuffling, briefly, is to take two or more RNG’s and use them together
to ‘increase randomness’ or at least destroy known periodicity (usually the
period of a LCG will be the modulus m or m — 1) without introducing

33

systematic behavior. One idea (the most common shuffle) is to use one RNG
to indirect-address another’, i.e., if x, and y, are both at least moderately
good RNG’s, one can initally fill a buffer of size D with successive z,, values
and use successive values y, mod D to choose one; then the one chosen is
replaced with the next newly generated element of the x, sequence. A
specific algorithm (coded in Fortran or C, along with comments about it) is
given in the Numerical Resipes book, and we implement a related shuffie in
R below.

(D). There are many other sorts of pseudorandom uniform-deviate gen-
erators, which we now survey briefly. One generic difficulty with these new
methods is that, while the tests performed on them become more and more
numerous and more and more sophisticated, they are mostly too compli-
cated to prove anything about mathematically. One author who has done
a lot of work on the number theoretic aspects of precise proofs concerning
LCG’s and some nonlinear congruential generators is H. Niederreiter, whose
bibliography can be viewed from the web-page mentioned above.

Marsaglia (1985) studied the class of Lagged Fibonacci Generators:
Tp = Tp_f + Tp_k mod m (L>Fk>0)

Based on extensive tests of their randomness properties, Marsaglia rates this
type of generator highly (finding deficiency only in his ‘Birthday Spacings
test’, for small L,k.) See

G. Marsaglia, A Current View of Random Number Generators,
Computer Science and Statistics, The Interface, Elsevier Science
Publishers B. V. (North Holland) L. Billard (ed.), 1985

Another variant class is that of Inversive RNG’s
Y1 = a - (1/y,) + b modm

where m is again either a prime or a power of 2, and the reciprocal
is taken mod m. There are number-theoretic proof-techniques for this
which give maximal period (e.g. m/2 when m is a power of 2 and
a =1 mod 4, b =2 mod 4) and which bound the maximum discrepancy
from uniform (over the whole period of the RNG) of the distribution of k-
tuples, e.g. by terms of order of magnitude (logm)*/\/m when m is prime
and a and b are chosen so that the generator has maximal period m.

34

NB: Analogous, but not quite as positive, results and bounds on discrepan-
cies exist for LCG’s (many due to H. Niederreiter surveyed in a 1992 book
or 1978 Bulletin-of-AMS article.)

Still another new class of generators is that of Multiply With Carry
RNG’s, illustrated from an email posted by Marsaglia in '94 concerning ‘the
mother of all RNGs’. The idea is to separate out low and high order dig-
its or bits, e.g. starting with ny = 123456, z¢o = 456, yo = 123 (called
the carry). Then calculate n; = 672 % 456 + 123 = 306555 and return
x1 = 555, y; = 306. The general step of this generator would be

Ngr1 = 672 %z + yg

where the three low-order digits of the answer nj.; would be defined as the
output xp.1, and the three high-order digits as the carry wyi.1. Marsaglia
recommends this kind of generator using the low- and high- 16 bits in a 32-
bit word, with the ‘carefully chosen’” multiplier 30903. But he has many
complicated variants of this.

Finally, a very handy class of really long period methods is that of Gen-
eralized Additive Shift Register or GASR RNG’s. These methods generate
binary digits z, by recursions

Tp = C1Tp_1 + C0Tp_o + -+ + CL Tn_p, mod 2

where the (binary) coefficients ¢, are fixed once and for all and will mostly
be 0’s. One particular choice studied by Fushimi (1988 Jour. for Assn.
of Computing Machinery), which also falls in the Lagged Fibonacci class
described above, is

L =521, cp=cp =1, c=0,k+# 32521

This generator has a huge period (2?°!), has some theory behind it, and
seems empirically to pass randomness tests. Therefore we recommend its use
as a shuffler of other RNG’s.

2.2 Uses of RNG’s & Recommended Choices

The most stringent requirements on RNG’s arise in Monte-Carlo applications
requiring huge simulations, including (i) Statistical Physics, (ii) Mathemati-
cal Finance (pricing of exotic financial instruments), (iii) Telecommunications

35

Queueing Networks, and (iv) Bayesian / Bootstrap / Markov Chain Monte
Carlo applications in statistics. Most of the recent fuss about this topic is
because of these applications. For us, the uses in large statistical simulations
would be most important, together with items (iv). In probability modeling
(examples of which are (i)-(iii) above), the main issue is to evaluate an an-
alytically intractable expectation or probability. Other algorithmic uses of
RNG’s which we will talk about in the course are:

e random re-starts for iterative numerical optimization methods whose
quality is sensitive to starting values;

e optimization of incomplete-data likelihoods based on EM or ‘impu-
tation’ algorithms which ‘fill in’ or ‘impute’ missing data repeatedly
between successive stages of likelihood maximization.

In each of these latter settings, one would pay a price in rapidity of con-
vergence, but not in wrong answers, if the RNG were not good. There are
many other uses of RNG’s where one simulates jitter or noise which are not
senstitive to moderate failures of randomness.

As to the choice of RNG, the best recommendation — well argued in the
Numerical Recipes book — is to stick with relatively simple, well-tested algo-
rithms (such as the better LCG’s) and shuffle them by a long-period (perhaps
less well tested) generator such as the Fushimi GASR. For uses in specifically
statistical simulations and algorithms, the speed of the RNG is much greater
than that of the other steps in the simulation-iterations, so reliable equidis-
tribution and independence properties, including very long period in some
applications, are much more important than the highest possible speed. But
by now, there are several random number generators implemented in R with
well-tested good properties. See the help-page for .Random.seed for lots of
information about the choices, but in all recent versions of R the default is
the "Mersenne Twister" type with Inversion.

2.3 Coding RNG’s, Shuffles, & Tests in R

Suppose we want to code a RNG ourselves in R, initially an LCG. Let the
multiplier, addend, and modulus respectively be (for illustration): a =

36

69069, b = 17, m = 23?2 = 4294967296. A fairly slow R routine for
generating (individual) pseudorandom deviates is

> Pseudo = ### divide by mm for Unif[0,1]
function(xseed, aa, bb, mm)
(aa * xseed + bb) %% mm

It is slow only because it has to be called with for-loops as in the following
calling sequence.

> longrand = array(data=0,c(900000))
c(size = object.size(longrand), storage.mode=mode(longrand))
size storage.mode
"7200112" "numeric"
> xseed = 65351
unix.time(for (i in 1:900000)
{ xseed = Pseudo(xseed,69069,17,4294967296)
longrand[i] = xseed/4294967296 })
user system elapsed
38.65 0.05 39.92 ### Roughly 40 CPU seconds !

By comparison, a timing-run to obtain 900000 uniform random numbers
via runif in R took 0.33 second.

How could we parallelize this ? Realizing that the R generator is very
quick, we could use it to generate a long block of seeds for us, which we will
run in parallel.

> longrand = array(data=0,c(10000,90))
xseed = trunc(runif (1000)*1.e7) ### Now want more seeds
> unix.time(for (i in 1:90)
{ xseed = Pseudo(xseed,69069,17,4294967296)
longrand[,i] = xseed/4294967296 })
user system elapsed
0.13 0.00 0.64 ## Great speedup !

As a further exercise in coding and parallelization, we discuss the im-
plementation in R of Fushimi’s (1988) GASR RNG. To begin, we contrast

37

the simplest possible implementation, in R function GASRrngA below, and
then a speeded-up version (generating identical output) which makes lim-
ited use of R’s vectorization capacities. Contrast the speeds below with the
approximately 1 second required by R to generate 9.e5 binary digits via:
rbinom(9e5, 1, 0.5).

> GASRrnghA =
function(inblk,nnum) {
outvec = c(inblk,rep(0,nnum))
for (i in 1:nnum) outvec[521+i] = xor (outvec[i],outvec[i+489])
generates binary string of length nnum from length-521
input binary string inblk of length 521
outvec[521+(1:nnum)]
}
> unix.time ({xrng = GASRrngA(rep(T,521),1.e5)})
user system elapsed
5.84 0.00 5.94 ## about 6 CPU sec for 1leb

> GASRrngB =
function(inblk,nnum) {
now we generate 32 at a time
numblk = (nnum+1) %/% 32
outvec = c(inblk,rep(0,32*numblk))
for (i in 1:numblk) {
irang = (i-1)*32+(1:32)
outvec[521+irang] = xor(outvec[irang],
outvec[489+irang])
}
outvec [621+(1:nnum)]
}
> inblk = rbinom(521,1,0.5)
unix.time (GASRrngB (inblk,32* (1+(9.e5%/% 32))))
user system elapsed
3.78 0.07 4.02 ### about 4 CPU sec for 9eb

In R — as in Splus — the speedup due to blocking the random-number
generation in this way was considerable (around a 10-fold improvement). The

difference is purely due to vectorization and shorter loops (by a factor of 32).

38

But still, assuming that we wanted to use these binary digits to construct
Uniform deviates, say to 6-figure decimal (=20-figure binary) accuracy, we
would be generating 9 * 10°/20 = 450,000 random numbers in 4 seconds,
while runif generates 9 10° in .7 second !

2.4 Shuffling in R

Here is an R routine using GASR randomly generated bits computed via
GASRrngB to shuffle runif. Recall that the GASR functions give 0, 1 out-
put, so we combine using binary expansion in order to get random integers
uniformly distributed on 1...2'. The idea of maintaining a big block of
runif deviates to select from is in part to shuffle well but also to allow se-
lection of 27 = 128 at a time with only a very small chance of ever choosing
the same one twice before re-filling the array.

> Shuffler
function(nnum, shufbits = 7, blkbits = shufbits + 11,
inblk = rbinom(521, 1, 0.5))
{
idea of shuffling is to indirect-address the usual
runif sequence in blocks. For parallel
implementation, address mnshuf uniform deviates before
replacing them.
ASSUME: blkbits >=5 and shufunitxblkbits > 521
blksiz = 2"blkbits
shufunit = 27shufbits
nout = (nnum + shufunit - 1) %/% shufunit
uniblk = runif (nout * shufunit + blksiz - shufunit)
Will ultimately waste blksiz-shufunit of these deviates.
pwrs = 27(0: (blkbits - 1))
tmpunit = blkbits * shufunit
outdev = array(0, dim = c(shufunit, nout))
newblk = uniblk[1:blksiz]
ctr = blksiz ### counts uniform deviates already used
for(j in 1:nout) {
Single step consists in assigning & replacing shufunit
deviates in newblk addressed by row of gasrblk entries

39

gasrtmp = GASRrngB(inblk, tmpunit)

inds = 1 + c(matrix(gasrtmp, ncol = blkbits,
byrow = T) Y%*% pwrs)

inblk = gasrtmp[(tmpunit - 520) :tmpunit]

outdev[, j] = newblk[inds]

newblk[inds] = uniblk[ctr + (1:shufunit)]

ctr = ctr+shufunit

3

c(outdev) [1:nnum]

> xtmp = Shuffler(l.e4,inblk=inblk) ## length 10000
summary (xtmp)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0001683 0.2473 0.4985 0.5023 0.7576 0.9999

> rbind(runif=unix.time(runif(9.e5)),
GASRrngB=unix.time (GASRrngB(inblk,9.e5)),
Shuffler=unix.time(Shuffler(9.e5, inblk=inblk)))[,1:3]
user.self sys.self elapsed

runif 0.13 0.01 0.15
GASRrngB 3.87 0.06 4.19
Shuffler 73.00 0.19 76.75

2.5 Goodness-of-fit Tests of Randomness

We have mentioned above the important activity of testing randomness of
the outputted pseudo-random sequences generated by the many RNG algo-
rithms. A quick version of a goodness of fit test is given in the following
R function. The chi-squared test of fit to a specified multinomial distribu-
tion is used to assess the equidistribution of the non-overlapping K-tuples
(Tpy oy Tnrr—1), n =0, K, 2K, ... by tabulating the counts of these K-
tuples falling in sets A C [0,1)% of the form [I%, [ai/L, (a; +1)/L) for
a; €{0,1, ..., L—1}. Of the arguments used in the following R function,
ncoord corresponds to K and nquant corresponds to L.

> FitNtupl = function(ncoord, nquant, indata) {
assumes block of pseudo-random uniform[0,1)

40

numbers in indata; to be tested for fit based on
empirically generated contingency-table of nquant
equal-length intervals in each of ncoord
consecutive coordinates
ntup = length(indata) %/% ncoord
idata = c(matrix(trunc(nquant * indata - le-11), ncol =
ncoord) %x*% nquant”(0:(ncoord - 1))) + 1
cellexp = ntup/(nquant ncoord)
cells = table(idata)
diagind = 1 + (0:(nquant - 1)) * sum(nquant”(0: (ncoord - 1)))
chistat = sum((cells - cellexp)~2)/cellexp
diagstat = (sum(cells[diagind]) - nquant * cellexp)~2/(nquant *
cellexp * (1 - ((cellexp * nquant)/ntup)))
list(chisq = chistat, pval = 1 - pchisq(chistat,
nquant“ncoord - 1), diagstat = diagstat, diagPval =
1-pchisq(diagstat, 1), CountTbl = cells)

}
> FitNtupl(2,4,runif(l.e4))
$chisq:
[1] 14.6432
$pval:
[1] 0.4774102
$diagstat:
[1] 0.1536
$diagPval:
[1] 0.6951185
$CountTbl:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
327 297 288 304 347 288 306 321 312 310 334 316 335 311 315 289

A quick glance at the output of FitNtupl shows what we want to see in
these tests of (K-th order) equidistribution. First, the 5000 nonoverlapping
pairs are very evenly distributed in the 16 cells A partitioning the unit
square by small squares of side-length 1/4. The chi-square statistics chisq
and diagstat, respectively to test overall balance and the relative fraction
of observations falling along the 4 diagonal cells of the unit square, fall well
within the middle range of values for the respective chi-squared distributions
with 15 and 1 degrees of freedom.

41

2.6 Illustration with RANDU

We illustrate by means of a scatter-plot and the Goodness-of-fit function
just presented, the terrible behavior of the RANDU LCG random number
generator with multiplier 7°, addend 0, and modulus 23%. First, we do
some preprocessing so that we can produce blocks of 32 variates at a time
from this generator.

> coef32 = numeric(32); two32 = 2°32; sevb = 775; fac =1
> for (j in 1:32) {

fac = (fac*sev5) %% two32

coef32[j] = fac }
> rm(fac,sev5)

> randublk = numeric(32x320)
> xseed = trunc(runif(1)*two32)
> for (j in 1:320) {
xtmp = (coef32 * xseed) %% two32
randublk[(j-1)*32+(1:32)] = xtmp/two32
xseed = xtmp[32] }
> summary (randublk)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001993 0.255 0.4998 0.5007 0.7488 0.9999
So far, this random-number output looks OK

With the 10240 generated deviates, we can get a visual indication of
something wrong by means of a scatterplot:

> plot(randublk[1:10239],randublk[2:10240],
xlab="RANDU[n]", ylab="RANDU[n+1]", main=
"Scatterplot of Consecutive Pairs of RANDU Deviates")

The scatterplot in the Figure is an indication of nonuniformity only because
it seems to have ‘holes’, although those holes do seem to be widely (and
even randomly) dispersed across the unit square. To confirm this failure of
equidistribution more formally, we apply FitNtupl:

42

> unlist (FitNtupl(2,10,randublk)) [1:2]
chisq pval
132.5781 0.0136907

The chi-quared statistic here had degrees of freedom 10> —1 = 99. In
order to confirm that the significant result found here was not a fluke, we do
a larger calculation:

> randublk = numeric(32x3200)

> xseed = trunc(runif(1)*two32)

> for (j in 1:3200) {
xtmp = (coef32 * xseed) %k two32
randublk [(j-1)*32+(1:32)] = xtmp/two32
xseed = xtmp[32] }

> unlist (FitNtupl(2,10,randublk)) [1:4]

chisq pval diagstat diagPval
29699.43 0 18 2.20905e-05

Thus, not only was the failure of equidistribution in the unit square not a
fluke according to the 99 df chi-square statistic for multinomial fit, but the
statistic for fit to the binomials with probability 0.01 of falling within the
diagonal cells is also dramatically larger than can be accounted for by chance
fluctuations. However, the fraction of the 51200 nonoverlapping observation-
pairs falling along the diagonal was 0.1002148, which is hardly different
from the theoretically expected value 0.10, since the standard deviation for
a Binomial(51200, 0.1) variable divided by 51200 is \/(0.1)(0.9)/51200 =
0.001326.

Exercise. Try shuffling the RANDU generator just described using the
Shuffler R function, modified so that the initial block uniblk of runif-
generated deviates is instead generated by RANDU. (Note: the functions
Shuffler and FitNtupl, along with the preprocessed vector coef32 of
coefficients defined above to facilitate blockwise generation, are available in
the MathNet directory /nfs/projects/statData/SplusCrs/Rstf.RData
or I can email their text versions to you). You should find that the shuffled
random-number generator passes all of the randomness tests you can think
of. Try it, using blocks of at least 102400 to make your tests.

43

Scatterplot of Consecutive Pairs of RANDU Deviates

e ... o5 Bl S oute 2 Yo iy
T el Gt e T R T 2";- ZEpATCR e ek S
-' 2 ,,;-"" il .«..-? f,xs’ W "."o‘ -:."- ’, .-.-;,,;‘; .I.s,-."'g AR 'w.-
0% o%es ol D YA ool
i
% :" TrrED S od o °." " X A
@ | "?3':.:'.‘.0 ""' c‘.q.:}"?.“ -”3',:‘-.4’*:'--.- e m. 'f' A '“ﬂt}'ﬁ:"
S AR S W e A o e ek
a0k d S st o, .Q,)"0'» ve20 7, J. XM
T N oyl 2 (% -:k,"‘,:’..'”)
PSR T Y Y R AL K g Gt et
VSO DAY P AT X & o3 2Pl o
AR '?. L {85 G0 "31% S0 .3?-’}' 2
o | ¥ RS RUBE AT A PN N
—_ s 1 ...‘,.%l $ee, .""vl‘}:' I
= © . ° oo [P e * N0y
3 ’ Sk -'i.': Cefnast
=) o o ‘.43":“ so IO
fa) :.;*, oS o A T
z PR '.'z-:-‘a(%? . e,
é < LY ‘?}" e 58 22088 o ke Oy
_ 2508, Nt o o Rty ety 3%
o ogo '." '. Sos e {’- ¢, 3
& .l. ,..o o‘ } ry '..‘".l"{:' ’.
iy i R
o.:.. & .." I LA .“.I’J‘ »
. -"o"l, "“I &.‘.,.'.. °
..:;[:"4 g ld. ;,‘.-....:. Al P RIEITLTY, 2"* 2 e
g 1 .f ?«V \‘I'}’?' et " .155" "] .w.. : '.l'.’ '.."'."3. 'tr.';?. ['f"‘r:--'.";":': &
Tl "'""!. o T S --“";' R R R R
oA "'o‘o%, YIS go ° o, :o'-c.' Iy Q%é‘
20 oo 4 ’0"' . 0.: .g ‘ .‘;A .0' " ”&"o . " h ", "" 5 ‘& ' "". ."
I’.'.' Yot S ‘ ."'. 9o w 'y Gt S0 4 1 3“ ""'" 'l Y ;;" _'?
”."' "'~ j’ ‘.'.J.::.' ‘. }3 8'& h. é '*., o.c’o J’.*.i.‘f.l'&,' “""’0" ,? l!
Q| SIS }- 1’)".: % . .'- r c"’cnu '-'.' Y Yol ":'.'0 ot '-‘-“‘:'U’ (X ‘&u
o
0.0 0.2 0.4 0.6 0.8 1.0
RANDU[N]

Figure 1: Scatterplot showing joint empirical distribution with ‘holes’ for con-
secutive pairs of points produced by the RANDU Linear-Conruential RNG.

44

