
Statistical Computing with R

Eric Slud, Math. Dept., UMCP

October 21, 2009

Overview of Course

This course was originally developed jointly with Benjamin Kedem and
Paul Smith. It consists of modules as indicated on the Course Syllabus.
These fall roughly into three main headings:

(A). R (& SAS) language elements and functionality, including computer-
science ideas;

(B). Numerical analysis ideas and implementation of statistical algorithms,
primarily in R; and

(C). Data analysis and statistical applications of (A)-(B).

The object of the course is to reach a point where students have some
facility in generating statistically meaningful models and outputs. Wher-
ever possible, the use of R and numerical-analysis concepts is illustrated in
the context of analysis of real or simulated data. The assigned homework
problems will have the same flavor.

The course formerly introduced Splus, where now we emphasize the use
of R. The syntax is very much the same for the two packages, but R costs
nothing and by now has much greater capabilities. Also, in past terms SAS
has been introduced primarily in the context of linear and generalized-linear
models, to contrast its treatment of those models with the treatment in
R. Students in this course have often had a separate and more detailed
introduction to SAS in some other course, so in the present term we will

not present details about SAS, in order to leave time for interesting data-
analytic topics such as Markov Chain Monte Carlo (MCMC) and multi-level
modeling in R.

Various public datasets will be made available for illustration, homework
problems and data analysis projects, as indicated on the course web-page.

The contents of these notes, not all of which are posted currently, and
which will be augmented as the term progresses, are:

1. Introduction to R

Unix and R preliminaries, R language basics, inputting data, lists and
data-frames, factors, functions.

2. Random Number Generation & Simulation

Pseudo-random number generators, shuffling, goodness of fit testing.

3. Graphics

4. Simulation Speedup Methods

5. Numerical Maximization & Root-finding

(respectively for log-likelihoods and estimating equations)

6. Commands for Subsetting

Manipulating Arrays and Data Frames

7. Spline Smoothing Methods

8. EM Algorithm

9. The Bootstrap Idea

10. Markov Chain Monte Carlo

Metropolis and Gibbs Sampling Algorithms
Convergence Diagnostics for MCMC
Bayesian Data Analysis applications using WinBugs

11. Multi-level Model Data Analysis

Linear and Generalized Linear Model Fitting and Interpretation

A few Exercises are contained in these notes, but all formal Homework as-
signments are posted separately in the course web-page Homework directory.

2

5 Numerical Maximization in Statistics

We want to minimize a function f (usually a negative- log-likelihood or
related function) over a parameter region which we believe contains at least a
sub-region over which the function is locally convex. In large-sample settings,
we expect a very sharp peak near which the function behaves like a quadric
surface. The calculus-based theory leads to several important remarks for
statistical problems.

• Search for parameters with ∇ f(ϑ) = 0;

• Newton-Raphson (NR) gives one-step solution in case f is quadratic;

• Newton-Raphson converges quadratically, i.e. with distances from the
local maximizer squaring at each iteration, if we start close enough;

• step-lengths for gradient ascent are essentially arbitrary but may have
to be made artifically small in order to avoid overflows and numerical
instabilities;

• NR steps may also be wild and numerically unstable away from the
immediate neighborhood of a local max.

• at a not-too-large computational cost, it makes sense to avoid unstable
steps by searching along the ray provided by either the gradient or
the NR increment to ensure that the function-value decreases at each
iteration (reduction of multivariate to univariate search).

The last suggestion, together with the requirement to approximate gradients
and Hessians via finite-difference schemes, is characteristic of Quasi-Newton
methods.

References for all of these topics: Numerical Recipes, plus general books
on optimization like Luenberger, Optimization by Vector Space Methods, or
general numerical-analysis books like the text of Stoer & Bulirsch often used
in MAPL 466 or 666.

55

5.1 Coding & R Functions Related to Newton-Raphson

The multivariate Newton-Raphson (NR) method of solving an equation
g(x) = 0, where g is a smooth (k-vector-valued) function of a k-dimensional
vector variable x

¯
whose Jacobian matrix

Jg(x) =


∂g1

∂x1

∂g1

∂x2
. . . ∂g1

∂xk

∂g2

∂x1

∂g2

∂x2
. . . ∂g2

∂xk

.
∂gk

∂x1

∂gk

∂x2
. . . ∂gk

∂xk


never vanishes, is to write and implement an equation saying that the lin-
ear (first-order Taylor series) approximation about x to the function at an
updated variable value x′ is precisely 0, i.e.

g(x) + Jg(x) (x′ − x) = 0 , or x′ = x − (Jg(x)−1) g(x)

The key application of this idea which we make in computational statistics
is, for a fixed dataset X, to

g(ϑ) = g(ϑ;X) = −∇ϑ logLik(ϑ;X)

The Newton-Raphson computational algorithm, which we code below in
Splus — both from first principles and by using existing standard functions —
is to begin with some initial value x(0) and then iteratively for m = 0, 1, . . .,
define

x(m+1) = x(m) − (Jg(x
(m))−1) g(x(m))

repeatedly until some termination-criterion is met, usually that either m
is equal to a fixed large number (like 25) or ‖x(m+1) − x(m)‖ falls below a
fixed tolerance (like 10−5). Here is a simple pair of crude R functions. The
first one, which numerically approximates gradients, is needed only if we do
not have a function implementing an analytical formula for the gradient.

56

> Gradmat

function(parvec, infcn, eps = 1e-06)

{

Function to calculate the difference-quotient approx gradient

(matrix) of an arbitrary input (vector) function infcn

Now recoded to use central differences !

dd = length(parvec)

aa = length(infcn(parvec))

epsmat = (diag(dd) * eps)/2

gmat = array(0, dim = c(aa, dd))

for(i in 1:dd)

gmat[, i] = (infcn(parvec + epsmat[, i]) -

infcn(parvec - epsmat[, i]))/eps

if(aa > 1) gmat else c(gmat)

}

NRroot

function(inipar, infcn, nmax = 25, stoptol = 1e-05,

eps = 1e-06, gradfunc = NULL)

{

if(is.null(gradfunc))

gradfunc = function(x) Gradmat(x, infcn, eps)

ctr = 0

newpar = inipar

oldpar = inipar - 1

while(ctr < nmax & sqrt(sum((newpar - oldpar)^2)) > stoptol) {

oldpar = newpar

newpar = oldpar - solve(gradfunc(oldpar), infcn(oldpar))

ctr = ctr + 1

}

list(nstep = ctr, initial = inipar, final = newpar,

funcval = infcn(newpar))

}

Recall that our most frequent statistical objective in using the NR root-
finder for the gradient log-likelihood is to minimize the negative log-likelihood
function. There is another simple method of numerical optimization called
Steepest Descent which, although crude, can often serve as an initialization-

57

stage for a NR method which must be coded ‘by hand’. The method is
simply to move an initial guess x to an improved one x′ by making a step
in the direction of the negative gradient. What advanced-calculus theory
tells is that this method improves the objective-function value as long as the
step-size is small enough and positive. A simple implementation is as follows.

> GradSrch

function(inipar, infcn, step, nmax = 25, stoptol = 1e-05,

unitfac = F, eps = 1e-06, gradfunc = NULL)

{

Function to implement Steepest-descent. The unitfac

condition indicates whether or not the supplied step-length

factor(s) multiply the negative gradient itself, or

the unit vector in the same direction.

if(is.null(gradfunc))

gradfunc = function(x) Gradmat(x, infcn, eps)

steps = if(length(step) > 1) step else rep(step, nmax)

newpar = inipar

oldpar = newpar - 1

ctr = 0

while(ctr < nmax & sqrt(sum((newpar - oldpar)^2)) > stoptol) {

ctr = ctr + 1

oldpar = newpar

newstep = gradfunc(oldpar)

newstep = if(unitfac) newstep/sqrt(sum(

newstep^2)) else newstep

use unit vector in gradient direction if unitfac=T

newpar = oldpar - steps[ctr] * newstep

}

list(nstep = ctr, initial = inipar, final = newpar,

funcval = infcn(newpar))

}

One might begin a likelihood maximization with several gradient steps, if
there is no particularly good initial guess available for the unknown parame-
ters. (The step-lengths might be chosen optimally within some range at each
iteration: we will show how to do this in R below.) After the steepest-descent

58

steps are no longer making rapid progress, one might use some automatic but
problem-specific criterion to switch over to NR iterations for more rapid final
stages of convergence to a minimizer.

There are several relevant R functions which, because they are hard-coded
in a lower-level language, run much faster than these crude functions. They
are: optim, optimize, nlm and nlminb. First, optimize is a univariate
function-minimizer which requires

(a) that a bounded search-interval be specified, and

(b) that the function to be minimized, even though depending nominally
on a scalar variable, can make sense of vectorized inputs.

By contrast, the R function nlm has the features

(a) that the vector variable of the function to be minimized is completely
unrestricted (otherwise the R function to use is nlminb);

(b) that an initial guess for the minimizing value must be supplied.

The function optim is a general-purpose optimizer which uses a different
algorithm from the quasi-Newton-Raphson based nlm, and may be more
stable but slower.

For our purposes in this Section, optimize is useful as a general way to
choose the best step-length at each stage of a gradient or Newton-Raphson
search. All three of the standard R functions minimize by using variants of
the Newton-Raphson algorithm and are very fast for well-behaved functions.

Let us illustrate next both the newly coded and standard functions in the
context of maximizing logistic and probit log-likelihoods.

5.1.1 Estimating Simulated Logistic & Probit Regressions

First create logistic- and probit- regression data with (the same set of four
independent binary regressors, with coefficients 0.5, 0.4, −0.3, 0.7 and in-
tercept − 2.

59

> bc = c(0.5,0.4,-0.3,0.7)

matcov = matrix(rbinom(800,1,0.5),ncol=4)

respLgst = rbinom(200,1,plogis(-2 + c(matcov %*% bc)))

respPrbt = rbinom(200,1,pnorm(-2 + c(matcov %*% bc)))

Next construct function to calculate both Logistic and Probit log- likelihoods.

> binregLik

function(b0, a0, covmat, yresp, dfcn = plogis)

{

pvec = dfcn(c(covmat %*% b0) + a0)

sum(log(ifelse(yresp == 1, pvec, 1 - pvec)))

}

> binregLik(bc,-2,matcov,respLgst, dfcn=plogis)

[1] -99.72052

> binregLik(bc,-2,matcov,respLgst, dfcn=pnorm)

[1] -110.4618

> binregLik(bc,-2,matcov,respPrbt, dfcn=pnorm)

[1] -68.98386

> binregLik(bc,-2,matcov,respPrbt, dfcn=plogis)

[1] -76.12052

Now we define the functions we will use in doing Logistic or Probit Regression
maximizations. For simplicity, we begin by maximization over only the first
two regression coefficients, treating the intercept and the other regression
parameters as known. First we do this by defining a new function, but later
we show how to do it by passing arguments within nlm.

> tempfunc1 = function(bb)

-binregLik(c(bb,-.3,.7),-2,matcov,respLgst)

> tempfunc2 = function(bb)

-binregLik(c(bb,-.3,.7),-2,matcov,respPrbt, dfcn=pnorm)

> c(Gradmat(c(.3,.3),tempfunc1))

[1] 0.3828816 -6.7208569

> c(Gradmat(c(.2,.6),tempfunc2))

[1] -17.464002 -9.702003

60

Consider now the estimation by Steepest Descents (with all steps equal to
−0.05 multiplied by the gradient) and Newton-Raphson, as well as the nlm

and glm functions. First we do the crudest possible Steepest-Descent, then
the same thing using the GradSrch function above.

> btmp = c(0.2,0.2)

> tempfunc1(c(0.2,0.2))

[1] 100.6072

> for (i in 1:10) { btmp = btmp - 0.05*Gradmat(btmp,tempfunc1)

cat(round(c(btmp, tempfunc1(btmp)), digits=5)," \n") }

0.29365 0.65901 98.45405

0.10797 0.66691 98.02156

0.06295 0.75911 97.86885

0.00696 0.7829 97.81074

-0.01923 0.81023 97.7876

-0.03951 0.82303 97.77821

-0.05128 0.83282 97.77438

-0.05927 0.83849 97.7728

-0.06425 0.84233 97.77215

-0.0675 0.84472 97.77188

case with Logistic responses fitted with logistic model

> round(unlist(GradSrch(c(0.2,0.2), tempfunc1, 0.05)),4)

nstep initial1 initial2 final1 final2 funcval

24.0000 0.2000 0.2000 -0.0733 0.8490 97.7717

> round(unlist(GradSrch(c(0.2,0.2), tempfunc1, 0.05,

nmax=100, unitfac=T)), 4)

nstep initial1 initial2 final1 final2 funcval

100.0000 0.2000 0.2000 -0.0245 0.9147 97.8637

So we can see in this setting that convergence by steepest descent is achieved,
but very slowly, and convergence is worse when we take our fixed step-lengths
to multiply the unit-vector in the gradient direction. To speed up conver-
gence, we appeal directly to NRroot.

> round(unlist(NRroot(c(0.2,0.2), function(bb)

t(Gradmat(bb,tempfunc1)))),4)

nstep initial1 initial2 final1 final2 funcval1 funcval2

5.0000 0.2000 0.2000 -0.0733 0.8491 0.0000 0.0000

61

> tempfunc1(.Last.value[4:5])

[1] 97.7717

Now we can see that convergence to the same final point from the same
starting-point as steepest-descent is achieved in 5 iteration-steps by NR, with
final gradient of the order 10−7 (rounded to 0 in funcval above. Now let us
compute and compare the 4-parameter maximum-likelihood estimates for
the probit model on the logistic-regression data, using first NRroot and then
the R functions nlmin and glm.

> round(unlist(NRroot(rep(0,4), function(bb) t(Gradmat(bb, function(uu)

-binregLik(uu,-2,matcov,respLgst,dfcn=pnorm))))),5)

nstep initial1 initial2 initial3 initial4 final1 final2

5.00000 0.00000 0.00000 0.00000 0.00000 0.18021 0.63372

final3 final4 funcval1 funcval2 funcval3 funcval4

-0.37469 1.35354 0.00000 0.00000 0.00000 0.00000

> round(unlist(nlm(function(uu) -binregLik(uu,-2,matcov,respLgst,

dfcn=pnorm), rep(0,4))),6)

minimum estimate1 estimate2 estimate3 estimate4 gradient1

97.458785 0.180212 0.633722 -0.374691 1.353542 0.000029

gradient2 gradient3 gradient4 code iterations

0.000035 -0.000008 0.000010 1.000000 14.000000

> glm(cbind(rsp,1-rsp) ~ v1 + v2 + v3 + v4,

family=binomial(link=probit), data=data.frame(

matrix(cbind(respLgst,matcov), ncol=5,

dimnames=list(NULL,c("rsp","v1","v2", "v3","v4")))),

start=c(-1,rep(0,4)))

...

Coefficients:

(Intercept) v1 v2 v3 v4

-1.19291 -0.05288 0.31336 -0.58544 0.91941

Degrees of Freedom: 199 Total (i.e. Null); 195 Residual

Null Deviance: 215.7

Residual Deviance: 186.2 AIC: 196.2

62

So all of the methods work well, but glm actually would not converge
if started at intercept of −2, and the converged valued of the intercept is
actually far from −2. Here are the results for glm and NRroot using the
logit link.

> tmpglm = glm(cbind(rsp,1-rsp) ~ v1 + v2 + v3 + v4, family=

binomial, data=data.frame(matrix(cbind(respLgst,matcov),

ncol=5, dimnames=list(NULL,c("rsp","v1","v2","v3","v4")))),

start=c(-2,rep(0,4)))

> tmpglm$coef

(Intercept) v1 v2 v3 v4

-2.06615883 -0.09706183 0.56893235 -1.01030128 1.61403788

> c(NRroot(rep(0,5), function(bb) t(Gradmat(bb, function(uu)

-binregLik(uu[2:5],uu[1],matcov,respLgst,dfcn=plogis))))$final)

[1] -2.06615879 -0.09706184 0.56893235 -1.01030130 1.61403784

5.2 Statistical & Likelihood-based theory

The optimization of likelihoods (and many other functions like distance or
contrast functions between observations and theoretical expectations based
on parametric models) are extremely special from the point of view of nu-
merical optimization. The main point is that there is underlying theory
to say that if the underlying statistical model fits then the locally quadric
surface near a likelihood maximum has curvatures for which we have Fisher-
information-related theoretical expressions which can be estimated ! This
gives some sort of check that the correct local optimum has been reached.

Your Stat 700-701 books have material on MLE closely related to this topic.
An additional reference at about the same level showing lots of examples
involving local theory for MLE’s is the book Theoretical Statistics of Cox &
Hinkley. (I believe this book also has accessible discussion of misspecified
models.) An important related paper is:

Efron, B. & Hinkley, D. (1978) Assessing the accuracy of the MLE: observed
vs. expected Fisher information. Biometrika 65, 457− 87.

63

The message of the paper is primarily that it is better to use observed Fisher
information of making confidence intervals from MLE’s than is the theoret-
ical Fisher Information with substituted parameter-estimators. But in our
context, we should want to calculate and compare both in order to assess
model-validity and correctness of convergence.

On the other hand, hypothesized models often turn out not to fit well,
and this has consequences for the estimation of parameters via numerical
maximization. We discussed above the checking of two kinds of ‘expectedin-
formation’ against the theoretical information matrix, with the numerically
calculated MLE ϑ̂ substituted. It was mentioned that this is a little op-
timistic in the usual case where you have no real reason to know that the
family of parametric models being fitted to the data is properly specified. In
case the data are analyzed by optimizing loglikelihood l(X, ϑ) with respect
to a specific (but possibly wrong) model, it can still be shown under general
conditions that there is an asymptotic value ϑ∗ to which the MLE ϑ̂
converges, with

ϑ̂− ϑ∗ ≈ −
(
∇⊗2

ϑ l(X, ϑ∗)
)−1

∇ϑl(X, ϑ∗)

where, for any vector v, the notation v⊗2 denotes v vt . Therefore, in
the context of iid data with density f , we would want to compute confi-
dence intervals for ϑ̂ not directly from any single observed or theoretical
information but by treating the asymptotic variance-covariance of ϑ̂ as(

∇⊗2
ϑ l(X, ϑ∗)

)−1
n∑

i=1

(∇ log f(Xi, ϑ∗))
⊗2

(
∇⊗2

ϑ l(X, ϑ∗)
)−1

In addition, an indication of lack of fit of a model with ML estimated
parameter ϑ̂ (on which are based the misspecification tests used by econo-
metricians) is a large discrepancy between any of

I(ϑ̂) = −
∫ (

∇⊗2
ϑ log f(x, ϑ)

)
f(x, ϑ) dx |ϑ=ϑ̂

or − 1

n

n∑
i=1

∇⊗2
ϑ log f(Xi, ϑ̂) or

1

n

n∑
i=1

(
∇ϑ log f(Xi, ϑ̂)

)⊗2

All of these, especially the first two, can be compared to check for correct
maximization in any simulation from a model f(x, ϑ). However, in real-data

64

settings, these matrices may be different either because the model is wrong
or because convergence to the proper MLE has not taken place !

References for this topic include a famous 1967 Fifth Berkeley Symposium
paper by Peter Huber and (a more recent paper which cites it) :

H. White (1982) Maximum likelihood estimation of misspecified models.
Econometrica 50, 1-25.

65

5.3 More on Numerical Maximization

5.3.1 Methods with Constraints on Parameters

• Re-parameterizations. For example, if a parameter λ is constrained
to be positive, then it could be reparameterized as eϑ for an arbitrary
real ϑ. Similarly, a probability parameter π constrained to be between
0, 1 could be re-defined as log(π

1−π
). The numerical maximization is

then performed with the unconstrained parameter.

• Penalty functions to enforce box-constraints (cf. nlminb)

• Projections to enforce functional constraints

For the latter two approaches, see Luenberger cited previously, or a numerical
analysis text.

Example: ‘Additive risk’ model

Two-group data, with group-indicators zi , and with observations which
are Expon(λ) if zi = 0 and Expon(λ + α) if zi = 1, where both
λ, α > 0.

5.3.2 Optimization Methods Using Randomness

• Random-restart methods to check uniqueness of local maxima or global
relative values

• Random perturbation methods, e.g. “Simulated Annealing”

References:

Kirkpatrick, S., Gelatt, C. & Vecchi, M. (1983) Optimization by simulated
annealing. Science 220, 671-80.

Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Intell. 6, 721-41.

66

5.4 Methods of Dealing with Missing Data

• Random multiple imputation

• EM algorithm: examples from contingency tables & mixture-data

References:

(1). Little, R. & Rubin, D. (1986) Statistical Analysis of Missing
Data. Wiley.

(2). Dempster, A., Laird, N. & Rubin, D. (1978) Maximum likelihood
from incomplete data via the EM algorithm. Jour. Roy. Statist. Soc B 40,
1-22.

(3). Wu, C.-F. (1983) Ann. Stat. 11, 95-103.

67

