
Statistical Computing with Splus & SAS

Eric Slud, Benjamin Kedem, & Paul Smith

January 29, 2003

Overview of Course

This course, which was originally developed jointly with three instructors,
consists of modules as indicated on the Course Syllabus. These fall roughly
into three main headings:

(A). Splus & SAS language elements and functionality, including computer-
science ideas;

(B). Numerical analysis ideas and implementation of statistical algorithms,
primarily in Splus; and

(C). Data analysis and statistical applications of (A)-(B).

The object of the course is to reach a point where students have some
facility in generating statistically meaningful models and outputs. Wherever
we can, we illustrate the use of Splus and numerical-analysis concepts in
the context of analysis of real or simulated data. The assigned homework
exercises — 8 to 10 over the term — will have the same flavor.

Various public datasets will be made available (starting early next week)
in the directory /usr/local/StatData . Homework will be assigned, be-
ginning next class.

1 Introduction to Splus

Splus is a so-called object-oriented language, which means roughly that it
is organized to recognize both inputs and outputs (such as numerical data
and fitted statistical models) from standard computer-representations, whch
have the structure primarily of lists with attributes of several special types.
All-encompassing definitions are elusive, but the main idea is that outputs
of one stage of analysis can be computed on and then inputted to further
stages [including further model-fitting, pictures and graphs, etc.] without
re-defining their structure. This makes Splus especially suited to interactive

analysis.

1.1 Unix Preliminaries

Unix commands are typed immediately after a Unix prompt, such as

evs@mary.umd.edu%

A useful basic list of commands is:

mkdir Creates directory, e.g. "mkdir .Data" from home directory.

pwd Prints current directory, e.g. /home2/bnk/dirA/.../dirN

man Unix help, e.g. "man pwd" gives information about "pwd".

cd Change directory, e.g. "cd .Data" moves to subdirectory .Data.

ls Lists all files excluding dot files.

ls -a Lists all files including dot files.

ls -l Lists files in long format. Size in bytes.

ls -lt Lists files in long format and sort by time of last change.

ls -lut Lists files in long format and sort by time of last access.

ls -s Lists files and their sizes.

rm Removes a file. E.g. "rm filename".

\rm Removes a file no questions asked.

cp Creates a copy of a file. E.g. "cp A B" copies A into B.

du Size of the working directory in kilobytes.

lpr -Plw2303 filename : prints file "filename" on 2nd floor printer.

"echo $PRINTER" gives the default printer.

1

Text Editors

There are several options such as ‘text editor’, ‘emacs’, ‘pico’, etc. Emacs
is convenient. To edit a file, from within Unix type

emacs filename &

This will open up a window, containing menus, ready for editing.

1.2 Splus Preliminaries

(a) Get into Splus by typing Splus following a Unix prompt. It is best to
do this only after deciding where you want your saved data a reside:
enter that directory and (after a Unix prompt) issue a command

mkdir .Data

Then the Splus save-area will be the subdirectory .Data within your
current directory.

(b) Exit Splus by typing q() following the Splus prompt > .

(c) Whenever an assignment has been made to an object name, that object
is retained in the current .Data directory until removed or another
assigment is made to the same name.

(d) To see what you have in your Splus .Data directory at any time, from
within Splus, type ls() following the Splus prompt.

(e) Specify a text editor for help and function-editing windows by typing
the command (after the Splus prompt) :

options(editor="emacs")

(f) What you type following the Splus prompt is always an expression.
Splus scans to the end of each typed line to make sure that the syn-
tax is (possibly) correct so far, and to check at the end of the line
whether the expression is complete or continuation-lines (prompted by

2

a new line on which Splus types ‘+’) are needed. When a syntactically
complete expression is reached, Splus evaluates it if possible, issuing
error messages if not all variables exist within the directories on the
search-list.

(g) Apart from arithmetic operations, Splus commands are given in the
form of functions, e.g.: q(), sum(xvec), plot(x,y), etc.

(h) Unless an expression specifies an action (such as assignment ‘<−’, or
graphical plotting, the result of evaluating the expression is an object (a
summary of) which is printed. If after seeing the object (before issuing
any other Splus commands) you want to assign and save it, type (after
the prompt)

newname <- .Last.value

1.3 Splus Language Elements

Splus operates on objects which all have the structure either of functions

(discussed later) or of vectors or lists with attached lists of attributes .

So what are lists made of ? To begin, data organized at its lowest
level into strings or vectors, and can be of the following types: Numerical
(or Complex), Boolean (T/F), and Character (with a string ”XYZname”
allowed to be a single vector-element).

> (1:9) - c(3,1,7) -> x

> x

[1] -2 1 -4 1 4 -1 4 7 2

> c("ABC", "g", "Maryland")

[1] "ABC" "g" "Maryland"

> y <- ((1:9) - c(3,1,7) > 0)

> y

[1] F T F T T F T T T

Throughout Splus, there are useful commands to convert types :

3

> as.numeric(y)

[1] 0 1 0 1 1 0 1 1 1

> as.character(x)

[1] "-2" "1" "-4" "1" "4" "-1" "4" "7" "2"

> as.numeric(.Last.value)

[1] -2 1 -4 1 4 -1 4 7 2

Every Splus object has a ‘length’, which for a vector is just the number of
entries; for a list is the number of components; and for a function is one plus
the number of arguments. For each object, there is a list of ‘attributes’ which
may be empty but might include: ‘dim’ and ‘dimnames’ for matrices and
arrays; ‘names’ for vectors,, lists, and functions; and ‘class’ for data-frame
and fitted model objects. You can also use these attributes as functions, e.g.
after defining the Splus data-frame LTdata via the read.table command in
Section 1.5 below

> names(LTdata) [1] "Stratum"

"Last10." "Cellct" "Tenure" "Race" "NumPer" [7] "Ethnic" "Locale"

There are several types of vectors with attributes, which constitute the next
stage of Splus objects. These includematrices and arrays —which we discuss
now — and also factors, which are treated later.

A matrix or array should be regarded as a vector, consisting of the en-
tries concatenated in lexicographic order of the array-indices (with the ear-
lier array-indices moving most rapidly), together with a (possibly empty)
‘attributes’ list giving the dimension (as a vector of integers) and the row
and column names.

> xvec <- runif(50)

> length(xvec)

[1] 50

> attributes(xvec)

list()

> ymat <- matrix(xvec, ncol=5)

> length(ymat)

4

[1] 50

> attributes(ymat)

$dim:

[1] 10 5

> sum(abs(c(ymat)-xvec))

[1] 0

1.4 Simplest Operations on Vectors and Arrays

As we saw above, you can use function ‘c()’ to create vectors by concatena-
tion, and two existing vectors can be concatenated to form a new one

> xvec <- c(1:3, c(7,9,1,4))

> xvec

[1] 1 2 3 7 9 1 4

A sub-vector of an existing vector xvec can be created as the same object
xvec[ivec] in either of two ways : ivec may be a vector of integer indices
of the length of the subvector you want or a Boolean or 0, 1 valued vector of
the same length as xvec:

> xvec[2*(1:3)]

[1] 2 7 1

> xvec[c(F,T,F,T,F,T,F)]

[1] 2 7 1

Standard mathematical functions automatically apply componentwise to
vectors:

> cos(pi*(0:6))

[1] 1 -1 1 -1 1 -1 1

> xvec > 3

[1] F F F T T F T

As a result, you can refer to subvectors of a given vector containing all
components satisfying a specified condition

5

> xvec[xvec>3]

[1] 7 9 4

Note: if you want to use equality in defining Boolean variables, you must
use == rather than = . ‘Not equal’ is denoted != .

To create a matrix or array from a vector:

> ymat <- matrix(c(xvec,0), ncol=2, dimnames=list(NULL,c("1st","2nd")))

> ymat

1st 2nd

[1,] 1 9

[2,] 2 1

[3,] 3 4

[4,] 7 0

> array(c(ymat), dim=c(2,2,2))

, , 1

[,1] [,2]

[1,] 1 3

[2,] 2 7

, , 2

[,1] [,2]

[1,] 9 4

[2,] 1 0

Note that in the matrix function, inserting the final option ‘, byrow=T’
before the final right-paren would cause the input vector elements to be
created with first row (1,2), second row (3,7), etc.

The objects as.vector(ymat) and c(ymat) are the same: just the
vector of elements (same as c(xvec,0) in this case).

Mathematical operations like ymatˆ2 applied to a matrix are again
applied componentwise, so the resulting object is again a 4× 2 matrix.

Some useful functions which apply to vectors are: sum, mean, var,
summary. If they are applied to matrices, the result is the same as if
applied to as.vector of the matrix.

6

Some useful functions and operations on matrices are:

t(ymat) transposed matrix

diagonal(xvec) diagonal matrix with diagonal vector xvec
diagonal(ymat) vector equal to main diagonal of ymat
solve(zmat) inverse of square matrix

Submatrices and sub-arrays can be created using the same logic as sub-
vectors: refer to vectors of indices in the appropriate dimension, with the
convention that leaving a dimension blank means all indices in that dimension
are included.

> ymat[c(1,3),]

1st 2nd

[1,] 1 9

[2,] 3 4

> ymat[2,]

1st 2nd

2 1

Thus the i’th row (respectively j’th column) of a matrix ymat is a vector

ymat[i,] (resp. ymat[,j]).

1.5 Inputting Data & Recovering Existing Objects

Throughout an Splus session, you will be defining and assigning Splus objects.
There are a few main ways for you to get access to existing datasets and (if
desired) to save them into your work-area (i.e., your .Data directory).

The simplest is to enter (small) datasets from the terminal:

> grades <- c(85, 73, 44, 97, 65)

> quizzes <- scan()

1: 4 8 7 6 5 9 9 8 7

10:

7

Here we are using the ‘scan’ command, which inputs a designated (ASCII)
file into a vector; in the usage just given, the ASCII file is created from the
terminal input. A more elaborate use of the scan command, which first strips
the two header lines, then inputs the data as a long vector, follows:

> LTvec <- scan("/home1/evs/LTdata.asc", skip=2, what=character())

> length(LTvec)

[1] 256

> LTvec[1:7]

[1] "1" "7267" "94069" "O" "NW" "MP" "HI"

Note: we would not have needed the ‘what=...’ entry, except that the data
consists both of numbers and character fields. Since we really want the data
in a matrix in our illustration below, and want to allow some columns as
categorical and others as numerical, a much easier way is

> LTdata <- read.table("/home1/evs/LTdata.asc", header=T)

For previously existing Splus objects, including all of the Splus-supplied data
and data which will be in the public /usr/localStatData directory, one can
either ‘get’ the object and assign it a new name in your directory

> newmat <- get("StratSiz","/home1/evs/CensusProj/Arrays/.Data")

> objects.summary("newmat")

data.class storage.mode extent object.size dataset.date

newmat matrix double 51 x 48 20525 99.01.27 18:29

or, better yet, you can refer to the object by its previous name once you
‘attach’ its directory to the Splus search list, e.g.

> attach("/home1/evs/CensusProj/Arrays/.Data")

> dim(StratSiz)

[1] 51 48

1.6 A Data Illustration

Here is a small dataset concerning the demographics of households which
were among the last 10% in their Census Tracts to be enumerated in the

8

1990 Decennial Census, from a Census report by T. Krenzke (1997). There
are 5 binary variable categories:

Tenure of housing unit: O = Owner, R = Renter
Race of head-of-household: NW = Nonwhite, WH = White
Number of Persons in household: MP = Multiple-person, SP = Single
Ethnicity (head-of-household): HI = Hispanic, NH = Non-Hispanic
Locality: R = Rural, U = Urban

For each demographic combination, Last10% is the number of (enumerated)
households, out of the total number Cellct, falling among the last tenth
enumerated in their Tracts.

Stratum Last10% Cellct Tenure Race NumPer Ethnic Locale

1 7267 94069 O NW MP HI R

2 53420 803461 O NW MP HI U

3 67462 842662 O NW MP NH R

4 276979 3805838 O NW MP NH U

5 1039 9378 O NW SP HI R

6 7492 66753 O NW SP HI U

7 19648 194929 O NW SP NH R

8 75485 775073 O NW SP NH U

9 13775 171222 O WH MP HI R

10 75581 1205599 O WH MP HI U

11 900518 13582241 O WH MP NH R

12 1438974 27514002 O WH MP NH U

13 2254 24443 O WH SP HI R

14 13192 170659 O WH SP HI U

15 226360 2730240 O WH SP NH R

16 472353 7034242 O WH SP NH U

17 8784 72336 R NW MP HI R

18 135168 1452680 R NW MP HI U

19 33065 310296 R NW MP NH R

20 485423 4419920 R NW MP NH U

21 1631 10205 R NW SP HI R

22 34662 246480 R NW SP HI U

23 13796 101362 R NW SP NH R

24 260072 1861864 R NW SP NH U

9

25 9688 74080 R WH MP HI R

26 133658 1239623 R WH MP HI U

27 306437 2624507 R WH MP NH R

28 1204371 11154455 R WH MP NH U

29 2183 15053 R WH SP HI R

30 43611 345677 R WH SP HI U

31 141658 1045221 R WH SP NH R

32 954350 7948841 R WH SP NH U

For purposes of illustration, we assume that these data reside in an ASCII
file called /home1/evs/LTdata.asc , which has 34 lines (two lines of header,
as shown). In section 1.5 above, the data were processed via read.table into
a data-frame LTdata. As a side-effect, each of the columns has become a
factor :

> attributes(LTdata[,"Tenure"])

$levels:

[1] "O" "R"

$class:

[1] "factor"

We next fit a simple linear regression model to the ratios Last10./Cellct
in terms of the binary factors without interactions. Some simple non-graphical
summaries follow:

> fitLT <- lm(Last10./Cellct ~ Tenure + Race + NumPer + Ethnic

+ + Locale, data=LTdata)

> names(fitLT)

[1] "coefficients" "residuals" "fitted.values" "effects"

[5] "R" "rank" "assign" "df.residual"

[9] "contrasts" "terms" "call"

> summary(LTdata[,2]/LTdata[,3])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0522997 0.0793687 0.107191 0.10301 0.122615 0.159824

10

> summary(fitLT$fitted)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0547577 0.0821846 0.10301 0.10301 0.123835 0.151262

> summary(fitLT$resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.0219314 -0.00548602 0.000896611 4.87891e-19 0.00662384 0.0164323

> fitLT$coef

(Intercept) Tenure Race NumPer Ethnic

0.103009888 0.0218158505 -0.00479605427 0.0122276504 -0.00349861644

Locale

-0.00591400994

> unlist(lapply(LTdata,levels))

Tenure1 Tenure2 Race1 Race2 NumPer1 NumPer2 Ethnic1 Ethnic2

"O" "R" "NW" "WH" "MP" "SP" "HI" "NH"

Locale1 Locale2

"R" "U"

The summary function has been used to display the 32-vectors of response
variables, fitted values and residuals. The numerical coding of the binary
factors is (-1,1), as can be seen for example from

> model.matrix(fitLT)[1:5,]

(Intercept) Tenure Race NumPer Ethnic Locale

1 1 -1 -1 -1 -1 -1

2 1 -1 -1 -1 -1 1

3 1 -1 -1 -1 1 -1

4 1 -1 -1 -1 1 1

5 1 -1 -1 1 -1 -1

We have now gotten to a point where we must talk about lists: how
to create them and how to refer to their components. We explain in the
following subsection the Splus list-related commands used above .

1.7 Lists

Lists can be created by concatenating Splus objects:

11

> listout <- list(name1 = obj1, name2 = obj2, name3 = obj3)

> names(listout)

[1] "name1" "name2" "name3"

The objects we concatenate will themselves be vectors and lists, possibly
with ‘attributes’. Here is a concrete, not too simple, example:

> listex <- list(x=c(1,4), y=function(x) x^2, z=fitLT)

> listex

$x:

[1] 1 4

$y:

function(x)

x^2

$z:

Call:

lm(formula = Last10./Cellct ~ Tenure + Race + NumPer + Ethnic +

Locale, data = LTdata)

Coefficients:

(Intercept) Tenure Race NumPer

0.103009888 0.0218158505 -0.00479605427 0.0122276504

Ethnic Locale

-0.00349861644 -0.00591400994

Degrees of freedom: 32 total; 26 residual

Residual standard error: 0.00902571784

There are two equivalent ways to refer to a list component, by number and
by name. In the last example, listex[[1]] and listex$x both refer to
the vector (1, 4); listex$y is the function x2, and listex[[3]] is the
linear-model fitted object fitLT discussed in Section 1.6 above. We saw
from names(fitLT) that fitLT itself was a list with various components
(mostly vectors) related to residuals, degrees of freedom, coefficients, etc.
Thus fitLT$coef is the vector of fitted coefficients. (Often, in Splus, the

12

standard model-object list-components do not need to be spelled out in full
— just far enough so that there is no ambiguity with other components.)

A tremendously useful kind of list is the Splus data-frame: the ele-
ments of a matrix are given the structure of a list whose components are the
columns. This has the advantage, as for LTdata described above, that the
different columns can have different data types. In addition, data-frames re-
tain the ‘dim’ attribute along with the convenience of allowing rows, columns
and submatrices to be referenced just as though the frame were a matrix.
Data-frames will be used frequently in applying Splus statistical analysis
functions.

In section 1.6, we used a command unlist(listname): it simply con-
catenates the elements of the list components as one long vector.

Finally, although Splus functions are not themselves lists, they have a
‘names’ attribute, which is a quick way to remind yourself of the order of
arguments needed for a function.

> names(lm)

[1] "formula" "data" "weights" "subset" "na.action"

[6] "method" "model" "x" "y" "contrasts"

[11] "..." ""

1.8 Digression on Factors

We know already that factors are vectors together with ‘levels’ attribute
giving (as character strings) the distinct values occurring in the vector of
elements and the class attribute ‘factor’. How can one transform a numeric
factor back to a numeric vector ?

> smpfac <- sample(1:20,30, replace=T)

> smpfac

[1] 6 18 10 6 19 6 3 5 14 11 8 16 20 17 18 7 7 17 7 2

[21] 18 9 2 15 11 12 5 7 4 18

> tmpfac <- factor(smpfac)

> levels(tmpfac)

[1] "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "14"

13

[13] "15" "16" "17" "18" "19" "20"

> as.numeric(tmpfac)

[1] 5 16 9 5 17 5 2 4 12 10 7 14 18 15 16 6 6 15 6 1

[21] 16 8 1 13 10 11 4 6 3 16

> sum(abs(smpfac-as.numeric(levels(tmpfac)[as.numeric(tmpfac)])))

[1] 0

Thus the as.numeric version of the factor is the sequence of indices within
the (ordered) levels for the vector of factor values.

1.9 Miscellaneous Commands

seq, rep, replace, ifelse

> y <- replace(x,(1:length(x))[x>90],NA)

> y <- ifelse([x>90],NA,x)

> z <- rep(c(1,2,3),10)

if, for, apply
runif, sample & other pseudorandom variate generators
sort, order, diff
search, .First

> .First <- function()

{

options(gui = "motif", editor = "emacs")

help.start()

}

1.10 Loose Ends

(1) Remark : within Splus commands like scan or attach or get , the abbrevi-
ation for your home directory will not be recognized, so you must use your
counterpart to my /home1/evs

(2) Invoke Unix commands from within Splus by either of:

14

> unix("ls -a /usr/local/StatData/SplusCrs")

[1] "." ".." ".Data" "Scheatsht" "pbcdata.asc"

> ! ls -a /usr/local/StatData/SplusCrs

(3). Attaching Data-frames

> attach(exampfram)

>objects(2)

[1] "AGEVAR" "ALBUMIN" "AUX" "CCHOL" "CIRRH" "COND" "DTH"

[8] "EVTTIME" "IDNUM" "LOGBILI" "OBS" "TRTGP"

15

Each of the following sets of commands does the same thing !

> y <- seq(a, b, (b-a)/n)

> y <- a + (0:n) * ((b-a)/n)

For ASCII data 1, 2, NA, 9, 8, NA, −3, 7 in file ‘testdat’:

> replace(z<- scan("testdat", sep=","), is.na(z), -999)

> as.numeric(ifelse((w <- scan("testdat", sep=",",

+ what=character()))=="NA","-999",w))

> rep(1:3,10)

> 1 + (0:29) %% 3

> c(zmat %*% rep(1/ncol(zmat),ncol(zmat)))

> apply(zmat,1,mean)

Apply either of the following after: set.seed(153)

> sort(w <- runif(100))

> { w<- runif(100)

+ w[order(w)] }

> sample(1:10,100, replace=T)

> 1 + trunc(runif(100)*10) ### equal only in distribution

Finally, here are three different ways to tabulate, in sorted increasing
order, the distinct values occuring in a numeric vector zv :

> table(zv)

> { szv <- sort(zv)

+ ind <- (1:length(szv))[diff(c(-1.e8,szv))>0]

+ cbind(szv[ind],diff(c(ind,length(szv)+1))) }

> { levs <- as.numeric(levels(factor(zv)))

+ szv <- split(zv,levs)

+ unlist(lapply(szv,length)) }

16

