
6 Numerical Maximization in Statistics

We want to minimize a function f (usually a negative- log-likelihood or
related function) over a parameter region which we believe contains at least a
sub-region over which the function is locally convex. In large-sample settings,
we expect a very sharp peak near which the function behaves like a quadric
surface. The calculus-based theory leads to several important remarks for
statistical problems.

• Search for parameters with ∇ f(ϑ) = 0;

• Newton-Raphson (NR) gives one-step solution in case f is quadratic;

• Newton-Raphson converges quadratically, i.e. with distances from the
local maximizer squaring at each iteration, if we start close enough;

• step-lengths for gradient ascent are essentially arbitrary but may have
to be made artifically small in order to avoid overflows and numerical
instabilities;

• NR steps may also be wild and numerically unstable away from the
immediate neighborhood of a local max.

• at a not-too-large computational cost, it makes sense to avoid unstable
steps by searching along the ray provided by either the gradient or
the NR increment to ensure that the function-value decreases at each
iteration (reduction of multivariate to univariate search).

The last suggestion, together with the requirement to approximate gradients
and Hessians via finite-difference schemes, is characteristic of Quasi-Newton
methods.

References for all of these topics: Numerical Recipes, plus general books
on optimization like Luenberger, Optimization by Vector Space Methods, or
general numerical-analysis books like the text of Stoer & Bulirsch often used
in MAPL 466 or 666.

52

6.1 Coding & Splus Functions Related to Newton-Raphson

The multivariate Newton-Raphson (NR) method of solving an equation
g(x) = 0, where g is a smooth (k-vector-valued) function of a k-dimensional
vector variable x

¯
whose Jacobian matrix

Jg(x) =

∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xk

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xk

.
∂gk

∂x1

∂gk

∂x2
. . . ∂gk

∂xk

never vanishes, is to write and implement an equation saying that the lin-
ear (first-order Taylor series) approximation about x to the function at an
updated variable value x′ is precisely 0, i.e.

g(x) + Jg(x) (x
′ − x) = 0 , or x′ = x − (Jg(x)

−1) g(x)

The key application of this idea which we make in computational statistics
is, for a fixed dataset X, to

g(ϑ) = g(ϑ;X) = −∇ϑ logLik(ϑ;X)

The Newton-Raphson computational algorithm, which we code below in
Splus — both from first principles and by using existing standard functions —
is to begin with some initial value x(0) and then iteratively for m = 0, 1, . . .,
define

x(m+1) = x(m) − (Jg(x
(m))−1) g(x(m))

repeatedly until some termination-criterion is met, usually that either m

is equal to a fixed large number (like 25) or ‖x(m+1) − x(m)‖ falls below a
fixed tolerance (like 10−5). Here is a simple pair of crude Splus functions.
The first one, which numerically approximates gradients, is needed only if we
do not have a function implementing an analytical formula for the gradient.

53

> Gradmat

function(parvec, infcn, eps = 1e-06)

{

Function to calculate the difference-quotient approx gradient

(matrix) of an arbitrary input (vector) function infcn

Now recoded to use central differences !

dd <- length(parvec)

aa <- length(infcn(parvec))

epsmat <- (diag(dd) * eps)/2

gmat <- array(0, dim = c(aa, dd))

for(i in 1:dd)

gmat[, i] <- (infcn(parvec + epsmat[, i]) - infcn(parvec -

epsmat[, i]))/eps

if(aa > 1)

gmat

else c(gmat)

}

NRroot

function(inipar, infcn, nmax = 25, stoptol = 1e-05,

eps = 1e-06, gradfunc = NULL)

{

assign("Infcn", infcn, frame = 0)

assign("Eps", eps, frame = 0)

if(is.null(gradfunc))

gradfunc <- function(x)

Gradmat(x, Infcn, Eps)

ctr <- 0

newpar <- inipar

oldpar <- inipar - 1

while(ctr < nmax & sqrt(sum((newpar - oldpar)^2)) > stoptol) {

oldpar <- newpar

newpar <- oldpar - solve(gradfunc(oldpar), infcn(oldpar))

ctr <- ctr + 1

}

list(nstep = ctr, initial = inipar, final = newpar,

funcval = infcn(newpar))

}

54

Recall that our most frequent statistical objective in using the NR root-
finder for the gradient log-likelihood is to minimize the negative log-likelihood
function. There is another simple method of numerical optimization called
Steepest Descent which, although crude, can often serve as an initialization-
stage for a NR method which must be coded ‘by hand’. The method is
simply to move an initial guess x to an improved one x′ by making a step
in the direction of the negative gradient. What advanced-calculus theory
tells is that this method improves the objective-function value as long as the
step-size is small enough and positive. A simple implementation is as follows.

> GradSrch

function(inipar, infcn, step, nmax = 25, stoptol = 1e-05,

unitfac = F, eps = 1e-06, gradfunc = NULL)

{

Function to implement Steepest-descent. The unitfac condition

indicates whether or not the supplied step-length factor(s) multiply

the negative gradient itself, or the unit vector in the same direction.

assign("Infcn", infcn, frame = 0)

assign("Eps", eps, frame = 0)

if(is.null(gradfunc))

gradfunc <- function(x)

Gradmat(x, Infcn, Eps)

steps <- if(length(step) > 1) step else rep(step, nmax)

newpar <- inipar

oldpar <- newpar - 1

ctr <- 0

while(ctr < nmax & sqrt(sum((newpar - oldpar)^2)) > stoptol) {

ctr <- ctr + 1

oldpar <- newpar

newstep <- gradfunc(oldpar)

newstep <- if(unitfac) newstep/sum(newstep^2) else newstep

newpar <- oldpar - steps[ctr] * newstep

}

list(nstep = ctr, initial = inipar, final = newpar,

funcval = infcn(newpar))

}

55

One might begin a likelihood maximization with several gradient steps,
if there is no particularly good initial guess available for the unknown pa-
rameters. (The step-lengths might be chosen optimally within some range
at each iteration: we will show how to do this in Splus below.) After the
steepest-descent steps are no longer making rapid progress, one might use
some automatic but problem-specific criterion to switch over to NR itera-
tions for more rapid final stages of convergence to a minimizer.

There are three relevant Splus functions which, because they are hard-
coded in a lower-level language like C, run much faster than these crude
functions. They are: optimize, nlmin, and ms. First, optimize is a univari-
ate function-minimizer which requires

(a) that a bounded search-interval be specified, and

(b) (as far as I can tell) that the function to be minimized, even though
depending nominally on a scalar variable, can make sense of vectorized in-
puts.

By contrast, the Splus function nlmin has the features

(a) that the vector variable of the function to be minimized is completely
unrestricted (otherwise the Splus function to use is nlminb);

(b) that an initial guess for the minimizing value must be supplied.

The functionms minimizes nonlinear functions of several variables which, like
negative-log-likelihoods, are built as sums of identical functions evaluated at
a succession of data-values.

For our purposes in this Section, optimize is useful as a general way to
choose the best step-length at each stage of a gradient or Newton-Raphson
search. All three of the standard Splus functions minimize by using vari-
ants of the Newton-Raphson algorithm and are very fast for well-behaved
functions.

Let us illustrate next both the newly coded and standard functions in the
context of maximizing logistic and probit log-likelihoods.

56

6.1.1 Estimating Simulated Logistic & Probit Regressions

First create logistic- and probit- regression data with (the same set of four
independent binary regressors, with coefficients 0.5, 0.4, −0.3, 0.7 and in-
tercept − 2.

> bc <- c(0.5,0.4,-0.3,0.7)

> matcov <- matrix(rbinom(800,1,0.5),ncol=4)

> respLgst <- rbinom(200,1,plogis(-2 + c(matcov %*% bc)))

> respPrbt <- rbinom(200,1,pnorm(-2 + c(matcov %*% bc)))

Next construct function to calculate both Logistic and Probit log- likelihoods.

> binregLik

function(b0, a0, covmat, yresp, dist = plogis)

{

pvec <- dist(c(covmat %*% b0) + a0)

sum(log(ifelse(yresp == 1, pvec, 1 - pvec)))

}

> binregLik(bc,-2,matcov,respLgst, dist=plogis)

[1] -88.10565

> binregLik(bc,-2,matcov,respLgst, dist=pnorm)

[1] -92.24571

> binregLik(bc,-2,matcov,respPrbt, dist=pnorm)

[1] -60.06637

> binregLik(bc,-2,matcov,respPrbt, dist=plogis)

[1] -69.00565

Now we define the functions we will use in doing Logistic or Probit Regression
maximizations. For simplicity, we begin by maximization over only the first
two regression parameters, treating the intercept and the other regression,
parameters as known.

> tempfunc1 <- function(bb)

-binregLik(c(bb,-.3,.7),-2,matcov,respLgst)

> tempfunc2 <- function(bb)

-binregLik(c(bb,-.3,.7),-2,matcov,respPrbt, dist=pnorm)

57

> c(Gradmat(c(.3,.3),tempfunc1))

[1] -4.324436 -4.730990

> c(Gradmat(c(.2,.6),tempfunc2))

[1] 1.888556 3.973546

Consider now the estimation by Steepest Descents (with all steps equal to
− 0.05 multiplied by the gradient) and Newton-Raphson, as well as the
nlmin and glm functions. First we do the crudest possible Steepest-Descent,
then the same thing using the GradSrch function above.

> btmp <- c(0.2,0.2)

> tempfunc1(c(0.2,0.2))

[1] 90.00409

> for (i in 1:10) { btmp <- btmp - 0.05*

Gradmat(btmp,tempfunc1)

cat(round(c(btmp, tempfunc1(btmp)), digits=5)," \n") }

0.52941 0.55127 88.16112

0.43557 0.46581 88.06424

0.46686 0.50402 88.04838

0.45242 0.49317 88.04627

0.45586 0.49913 88.04594

0.45337 0.49812 88.04589

0.45353 0.49924 88.04588

0.453 0.49928 88.04587

0.4529 0.49955 88.04587

0.45275 0.49963 88.04587

> unlist(GradSrch(c(0.2,0.2), tempfunc1, 0.05))

nstep initial1 initial2 final1 final2 funcval

16 0.2 0.2 0.4525808 0.4998214 88.04587

> unlist(GradSrch(c(0.2,0.2), tempfunc1, 0.05, unitfac=T))

nstep initial1 initial2 final1 final2 funcval

25 0.2 0.2 0.3073977 0.3153444 88.7657

So we can see in this setting that convergence by steepest descent is achieved
but very slowly, and is worse when we take our fixed step-lengths to multiply
the unit-vector in the gradient direction. To speed up convergence, we appeal
directly to NRroot.

58

> unlist(NRroot(c(0.2,0.2), function(bb) t(Gradmat(bb,tempfunc1))))

nstep initial1 initial2 final1 final2 funcval1 funcval2

4 0.2 0.2 0.4525694 0.4998326 3.836931e-07 5.400125e-07

> tempfunc1(.Last.value[4:5])

[1] 88.04587

Now we can see that convergence to the same final point from the same
starting-point as steepest-descent is achieved in 4 iteration-steps by NR, with
final gradient of the order 10−7. Now let us compute and compare the 4-
parameter maximum-likelihood estimates for the probit model on the logistic-
regression data, using first NRroot and then the Splus functions nlmin, ms,
and glm.

> unlist(NRroot(rep(0,4), function(bb) t(Gradmat(bb, function(uu)

+ -binregLik(uu,-2,matcov,respLgst,dist=pnorm)))))

nstep initial1 initial2 initial3 initial4 final1 final2 final3

5 0 0 0 0 0.63364 0.5637013 -0.1829429

final4 funcval1 funcval2 funcval3 funcval4

0.9061298 1.421085e-08 -4.263256e-08 -5.684342e-08 -7.105427e-08

> unlist(nlmin(function(uu) -binregLik(uu,-2,matcov,respLgst,

dist=pnorm), rep(0,4)))

x1 x2 x3

"0.63363989720753" "0.563701077867386" "-0.182940934641386"

x4 converged conv.type

"0.906129305996438" "TRUE" "relative function convergence"

> msobj <- ms(~ -rsp*log(pnorm(-2+v1*b1 + v2*b2 + v3*b3 + v4*b4))-

(1-rsp)*log(1-pnorm(-2+v1*b1 + v2*b2 + v3*b3 + v4*b4)),

data=data.frame(matrix(cbind(respLgst,matcov), ncol=5,

dimnames=list(NULL,c("rsp","v1","v2", "v3","v4")))),

start=list(b1=0,b2=0,b3=0,b4=0), trace=T)

Iteration: 0 , 1 function calls, F= 147.4891

Parameters:

[1] 0 0 0 0

Iteration: 1 , 2 function calls, F= 90.02893

Parameters:

[1] 0.4963568 0.5201192 0.3734082 0.5862357

59

Iteration: 2 , 3 function calls, F= 88.08288

Parameters:

[1] 0.6387613 0.5379012 -0.5332946 0.9828399

Iteration: 3 , 5 function calls, F= 86.83833

...

Iteration: 14 , 20 function calls, F= 86.08953

Parameters:

[1] 0.6336458 0.5637054 -0.1829599 0.9061303

> msobj$param

b1 b2 b3 b4

0.6336399 0.5637011 -0.1829409 0.9061293

> glm(cbind(rsp,1-rsp) ~ v1 + v2 + v3 + v4 + Int - 1,

family=binomial(link=probit), data=data.frame(

matrix(cbind(respLgst,rep(1,200),matcov), ncol=6,

dimnames=list(NULL,c("rsp","v1","v2", "v3","v4","Int")))),

start=c(matcov %*% rep(0,4)) - 2)

Error in glm.fitter: Missing value where logical needed:

if(df.residual > 0) fit$assign.residual <- (rank + 1):n

So all of the methods work well, except that glm specified with the wrong
choice of link may not converge. With the correct choice of link, we have
better luck:

> tmpglm <- glm(cbind(rsp,1-rsp) ~ v1 + v2 + v3 + v4 + Int - 1,

family=binomial, data=data.frame(

matrix(cbind(respLgst,matcov,rep(1,200)), ncol=6,

dimnames=list(NULL,c("rsp","v1","v2", "v3","v4","Int")))),

start=c(matcov %*% rep(0,4)) - 2)

> tmpglm$coef

v1 v2 v3 v4 Int

0.8695273 0.7992177 -0.449265 1.347821 -2.899334

> c(NRroot(rep(0,5), function(bb) t(Gradmat(bb, function(uu)

-binregLik(uu[1:4],uu[5],matcov,respLgst,dist=plogis))))$final)

[1] 0.8695275 0.7992178 -0.4492651 1.3478211 -2.8993347

60

Concerning the last model-fit, we digress momentarily: note that glm does
not seem to give a way to fix the intercept and fit the logistic regression
model using restricted Maximum Likelihood. In fact, there is a way (custom-
modifying the link definition), but it is unreasonably difficult, so one would
probaby use ms or some other estimation function instead. In the last-fitted
model, we can examine the incremental deviances due to successively added
model terms as follows:

> anova(tmpglm)

Analysis of Deviance Table, Binomial model

Response: cbind(rsp, 1 - rsp)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 200 277.2589

v1 1 24.30848 199 252.9504

v2 1 5.96717 198 246.9832

v3 1 27.07522 197 219.9080

v4 1 0.06075 196 219.8473

Int 1 48.84046 195 171.0068

This says in particular that the intercept coefficient (entered last) is highly
significant: p-value = 1− pchisq(48.84, 1) = 3e− 12. The correct intercept
value, we know, is − 2, while the estimated value is − 2.899, and the
other coefficients are also different from the true ones ! However:

> -binregLik(tmpglm$coef[1:4],tmpglm$coef[5],matcov,respLgst)

[1] 85.5034 ### -logLik for 5-par model

> -binregLik(c(NRroot(rep(0,4), function(bb) t(Gradmat(bb, function(bb)

-binregLik(bb,-2,matcov,respLgst,dist=plogis))))$final),-2,

matcov,respLgst)

[1] 87.32924 ### -logLik for 4-par model

So the likelihood ratio statistic (χ2
1) for the difference of the Intercept

coefficient from − 2 with these data is 2 · (87.329 − 85.503) = 3.472
which gives p-value 0.062. Thus the difference between the fitted Interecept
and − 2, which looked striking, is nevertheless not significant.

61

6.2 Statistical & Likelihood-based theory

The optimization of likelihoods (and many other functions like distance or
contrast functions between observations and theoretical expectations based
on parametric models) are extremely special from the point of view of nu-
merical optimization. The main point is that there is underlying theory
to say that if the underlying statistical model fits then the locally quadric
surface near a likelihood maximum has curvatures for which we have Fisher-
information-related theoretical expressions which can be estimated ! This
gives some sort of check that the correct local optimum has been reached.

Your Stat 700-701 books have material on MLE closely related to this topic.
An additional reference at about the same level showing lots of examples
involving local theory for MLE’s is the book Theoretical Statistics of Cox &
Hinkley. (I believe this book also has accessible discussion of misspecified
models.) An important related paper is:

Efron, B. & Hinkley, D. (1978) Assessing the accuracy of the MLE: observed
vs. expected Fisher information. Biometrika 65, 457− 87.

The message of the paper is primarily that it is better to use observed Fisher
information of making confidence intervals from MLE’s than is the theoret-
ical Fisher Information with substituted parameter-estimators. But in our
context, we should want to calculate and compare both in order to assess
model-validity and correctness of convergence.

On the other hand, hypothesized models often turn out not to fit well,
and this has consequences for the estimation of parameters via numerical
maximization. We discussed above the checking of two kinds of ‘expectedin-
formation’ against the theoretical information matrix, with the numerically
calculated MLE ϑ̂ substituted. It was mentioned that this is a little op-
timistic in the usual case where you have no real reason to know that the
family of parametric models being fitted to the data is properly specified. In
case the data are analyzed by optimizing loglikelihood l(X,ϑ) with respect
to a specific (but possibly wrong) model, it can still be shown under general
conditions that there is an asymptotic value ϑ∗ to which the MLE ϑ̂

62

converges, with

ϑ̂− ϑ∗ ≈ −
(

∇⊗2
ϑ l(X,ϑ∗)

)−1
∇ϑl(X,ϑ∗)

where, for any vector v, the notation v⊗2 denotes v vt . Therefore, in
the context of iid data with density f , we would want to compute confi-
dence intervals for ϑ̂ not directly from any single observed or theoretical
information but by treating the asymptotic variance-covariance of ϑ̂ as

(

∇⊗2
ϑ l(X,ϑ∗)

)−1
n
∑

i=1

(∇ log f(Xi, ϑ∗))
⊗2

(

∇⊗2
ϑ l(X,ϑ∗)

)−1

In addition, an indication of lack of fit of a model with ML estimated
parameter ϑ̂ (on which are based the misspecification tests used by econo-
metricians) is a large discrepancy between any of

I(ϑ̂) = −
∫

(

∇⊗2
ϑ log f(x, ϑ)

)

f(x, ϑ) dx |ϑ=ϑ̂

or −
1

n

n
∑

i=1

∇⊗2
ϑ log f(Xi, ϑ̂) or

1

n

n
∑

i=1

(

∇ϑ log f(Xi, ϑ̂)
)⊗2

All of these, especially the first two, can be compared to check for correct
maximization in any simulation from a model f(x, ϑ). However, in real-data
settings, these matrices may be different either because the model is wrong
or because convergence to the proper MLE has not taken place !

References for this topic include a famous 1967 Fifth Berkeley Symposium
paper by Peter Huber and (a more recent paper which cites it) :

H. White (1982) Maximum likelihood estimation of misspecified models.
Econometrica 50, 1-25.

63

6.3 More on Numerical Maximization

6.3.1 Methods with Constraints on Parameters

• Re-parameterizations. For example, if a parameter λ is constrained
to be positive, then it could be reparameterized as eϑ for an arbitrary
real ϑ. Similarly, a probability parameter π constrained to be between
0, 1 could be re-defined as log(π

1−π
). The numerical maximization is

then performed with the unconstrained parameter.

• Penalty functions to enforce box-constraints (cf. nlminb)

• Projections to enforce functional constraints

For the latter two approaches, see Luenberger cited previously, or a numerical
analysis text.

Example: ‘Additive risk’ model

Two-group data, with group-indicators zi , and with observations which
are Expon(λ) if zi = 0 and Expon(λ + α) if zi = 1, where both
λ, α > 0.

6.3.2 Optimization Methods Using Randomness

• Random-restart methods to check uniqueness of local maxima or global
relative values

• Random perturbation methods, e.g. “Simulated Annealing”

References:

Kirkpatrick, S., Gelatt, C. & Vecchi, M. (1983) Optimization by simulated
annealing. Science 220, 671-80.

Geman, S. & Deman, D. (1984) Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Intell. 6, 721-41.

64

6.4 Methods of Dealing with Missing Data

• Random multiple imputation

• EM algorithm: examples from contingency tables & mixture-data

References:

(1). Little, R. & Rubin, D. (1986) Statistical Analysis of Missing

Data. Wiley.

(2). Dempster, A., Laird, N. & Rubin, D. (1978) Maximum likelihood
from incomplete data via the EM algorithm. Jour. Roy. Statist. Soc B 40,
1-22.

(3). Wu, C.-F. (1983) Ann. Stat. 11, 95-103.

65

