
7 Loose Ends

7.1 More Commands for Subsetting

Suppose you have a vector of observations for which you want to transform
all entries satisfying a specified condition according to a rule you specify. For
example, consider the following data on final exam grades from an under-
graduate class:

Final410 <- c(75,93,71,71,50,71,57,53,74,71,100,92,74,93,95,

68,70,55,100,29,78,63,34,55)

If we want to change grades by adding 3 points to all scores below 65, then
here are four distinct ways which do not use for-loops:

> x <- Final410; x[x<65] <- x[x<65]+3;

> x <- Final410 + 3*as.numeric(Final410<65)

> x <- replace(Final410, Final410<65, Final410[Final410<65]+3)

> x <- ifelse(Final410<65, Final410+3, Final410)

All four command-lines give the same result. I find the last one the most
attractive conceptually: ifelse is a very nice command for adjusting pieces of
vectors. Note that the third argument in the replace function above must des-
ignate the components needed to do the replacement and must have exactly
the same length as the number of entries satisfying the condition specified
by the second argument ! (The command

> x <- replace(Final410, Final410<65, Final410+3)

definitely gives a different result.)

7.2 Special Syntax for Parallelizing

Once you get used to avoiding for-loops by parallelizing, you will naturally
try to write all of your expressions so that they make sense and give compo-
nentwise correct results when applied to vectors. In a few cases, this requires

66

special syntax. For example, min(x,y) denotes the smaller of the two numbers
x, y, but if x and y are vectors of the same length, then min(x,y) gives the
same result as min(c(x,y)), which is the smallest single entry in the combined
vector. If instead you want the vector of coordinatewise smaller entries x[i],
y[i], then the command is pmin(x,y). (Similarly for max use instead pmax.
Another example is: (x < y && x >= 3), which has the natural Boolean
interpretation if x and y are scalar, but you must use & in place of && if
you want the componentwise correct Boolean vector.

7.3 Meaning of (Smoothing) Splines

The splines which we use in speeding up interpolation and inversion of func-
tions are provided by Splus functions smooth.spline and predict.smooth.spline.
The mathematical definition of these functions is as the solution of the follow-
ing optimization problem. Suppose that data-pairs {(xi, yi)}

n

i=1
are given,

with xi ∈ [a, b] and a, b known, and that a subset K ⊂ {xi}
n

i=1
and a

positive constant λ are specified. The problem is to find the continuously
differentiable function s : [a, b] 7→ R satisfying s(xi) = yi ∀xi ∈ K to

minimize
n

∑

i=1

(yi − s(xi))
2 + λ

∫

b

a

(s′′(x))2 dx

If there were no knots at all (K = ∅), then the solution is obviously the
least-squares line. More generally, it can be shown that the solution s(·)
is a piecewise cubic polynomial, which is also called a cubic spline. For
given λ the solution exhibits more smoothing and less accuracy in satis-
fying s(xi) = yi when the set of knots becauses smaller, and for a fixed
set of knots the solution exhibits more smoothing and less accuracy in sat-
isfying s(xi) = yi for xi 6∈ K when λ is made larger. In general, it
works quite well to use a very small spar parameter (which is proportional
to λ in a way which is described clearly in the online documentation to
smooth.spline) when the (xi, yi) pairs are believed to pass close to a very
smooth curve. But you may have to try a couple of cases and plot the re-
sulting predict.smooth.spline function to see whether you have achieved the
desired degree of visual smoothness.

Here is a little demonstration that smooth.spline and predict.smooth.spline
produce a piecewise cubic polynomial:

67

> x <- runif(10)

> y <- 4*x^5 - 3*x^2 +2

> tmpspl <- smooth.spline(x,y,spar=1.e-6,all.knots=T)

> sort(x)[8:9]

[1] 0.5146857 0.6923524

Since there are no points between .52 and .65, let’s look at

the spline-function on that interval !!

> z <- predict.smooth.spline(tmpspl, .52+(0:10)*.01)$y

> var(diff(diff(diff(z)))) ### = 1e-30

For a vector z, diff(z) is a vector of first-differences with entries zi−zi−1, i ≥
2. The cubic nature of the function at the points .52, .53, . . . , .62 is shown
by the fact that the third differences are constant.

68

