8 Notes on EM Algorithm

8.1 EM Algorithm for Multinomial \& Mixture Data

General Example 1. Suppose that for fixed integers $1 \leq K<C$, cellcounts $\mathbf{X}=\left(X_{1}, \ldots, X_{K}\right)$ are observed, and cell-counts $\mathbf{Y}=\left(Y_{K+1}, \ldots, Y_{C}\right)$ cannot be observed, where

$$
\left(X_{1}, \ldots, X_{K}, Y_{K+1}, \ldots, Y_{C}\right) \sim \operatorname{Multinomial}\left(n, p_{j}(\vartheta), j=1, \ldots, C\right)
$$

Here ϑ is an unknown parameter of dimension $d \leq K$, and the functions $p_{j}(\vartheta)$ which share ϑ as a parameter are sufficiently smooth. Also denote

$$
X_{K+1}=n-X_{1}-\cdots-X_{K}=\sum_{j=K+1}^{C} Y_{j}
$$

For notational convenience, define

$$
q_{K}(\vartheta)=1-p_{1}(\vartheta)-\cdots-p_{K}(\vartheta)
$$

In this setting, we express the conditional joint density of \mathbf{Y} given \mathbf{X} by

$$
f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{X}, \vartheta)=\exp \left(\sum_{j=K+1}^{C} y_{j} \log \left(\frac{p_{j}(\vartheta)}{q_{K}(\vartheta)}\right)\right) \cdot\binom{X_{K+1}}{Y_{K+1}, \ldots, Y_{C}}
$$

It follows that the E-step of the EM algorithm replaces $E_{\vartheta_{1}}\left(\log f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{Y} \mid \mathbf{X}, \vartheta)\right)$ by

$$
X_{K+1} \sum_{j=K+1}^{C} \frac{p_{j}\left(\vartheta_{1}\right)}{q_{K}\left(\vartheta_{1}\right)} \log \left(\frac{p_{j}(\vartheta)}{q_{K}(\vartheta)}\right)+\log \binom{X_{K+1}}{Y_{K+1}, \ldots, Y_{C}}
$$

or equivalently, replaces Y_{j} by $X_{K+1} \cdot p_{j}\left(\vartheta_{1}\right) / q_{K}\left(\vartheta_{1}\right)$ for $j=K+1, \ldots, C$.

To confirm that the definition of log-likelihood and conditional log-likelihood terms as above, without multinomial coefficients, is legitimate, we observe that the property needed in the proof of log-likelihood improvement for EM iterations holds, that is,

$$
E_{\vartheta}\left(\log L_{\mathbf{Y}\lfloor X}\left(n_{C+1}, \ldots, n_{K} \mid \mathbf{X}, \vartheta\right)-\log L_{\mathbf{Y}\lfloor X}\left(n_{C+1}, \ldots, n_{K} \mid \mathbf{X}, \vartheta_{1}\right)\right) \geq 0
$$

or equivalently, for all ϑ, ϑ_{1},

$$
\sum_{j=C+1}^{K} \frac{p_{j}(\vartheta)}{q(\vartheta)} \log \frac{p_{j}(\vartheta) q\left(\vartheta_{1}\right)}{q(\vartheta) p_{j}\left(\vartheta_{1}\right)} \geq 0
$$

But this is a standard, discrete version of the famous 'Information Inequality' proved more generally in the form $\int f(x) \log (f(x) / g(x)) d \nu(x) \geq 0$ for probability densities with respect to a measure ν, using Jensen's Inequality.

In the multinomial setting, we express the conditional likelihood for \mathbf{Y} given \mathbf{X} by

$$
L_{\mathbf{Y} \mid \mathbf{X}}\left(n_{C+1}, \ldots, n_{K} \mid \mathbf{X}, \vartheta\right)=\exp \left(\sum_{j=C+1}^{K} n_{j} \log \left(\frac{p_{j}(\vartheta)}{q(\vartheta)}\right)\right)
$$

The E-step of the EM algorithm replaces this conditional log-likelihood, when the current parameter-iterate is ϑ_{1}, by

$$
E_{\vartheta_{1}}\left(\log L_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{Y} \mid \mathbf{X}, \vartheta) \mid \mathbf{X}\right)=n^{*} \sum_{j=C+1}^{K} \frac{p_{j}\left(\vartheta_{1}\right)}{q\left(\vartheta_{1}\right)} \log \left(\frac{p_{j}(\vartheta)}{q(\vartheta)}\right)
$$

This expression is also equal to $\log L_{\mathbf{Y} \mid \mathbf{X}}\left(n_{C+1}^{*}, \ldots, n_{K}^{*} \mid \mathbf{X}, \vartheta\right)$, where $n_{j}^{*}=$ $E_{\vartheta_{1}}\left(n_{j}^{*} \mid \mathbf{X}\right)=n^{*} \cdot p_{j}\left(\vartheta_{1}\right) / q\left(\vartheta_{1}\right)$ for $j=C+1, \ldots, K$.

Thus we have the following comparison between maximization approaches. First, the complete-data likelihood to maximize, if Y could also be observed, would be

$$
\sum_{j=1}^{K} X_{j} \log p_{j}(\vartheta)+X_{K+1} \log q_{K}(\vartheta)+\sum_{j=K+1}^{C} Y_{j} \log \frac{p_{j}(\vartheta)}{q_{K}(\vartheta)}
$$

while the crude marginal-observed-data likelihood to maximize is

$$
\sum_{j=1}^{K} X_{j} \log p_{j}(\vartheta)+X_{K+1} \log q_{K}(\vartheta)
$$

On the other hand, the M-step of the EM algorithm, after replacement of the unobservable Y_{j} values in the complete-data likelihood by their E-step imputed values, is

$$
\sum_{j=1}^{K} X_{j} \log p_{j}(\vartheta)+X_{K+1} \log q_{K}(\vartheta)+X_{K+1} \sum_{j=K+1}^{C} \frac{p_{j}\left(\vartheta_{1}\right)}{q_{K}\left(\vartheta_{1}\right)} \log \frac{p_{j}(\vartheta)}{q_{K}(\vartheta)}
$$

$$
=\sum_{j=1}^{K} X_{j} \log p_{j}(\vartheta)+X_{K+1} \sum_{j=K+1}^{C} \frac{p_{j}\left(\vartheta_{1}\right)}{q_{K}\left(\vartheta_{1}\right)} \log p_{j}(\vartheta)
$$

Note that the M-step involves a step of maximizing the complete-data likelihood using imputed data for the Y_{j} 's, which will be very easy in some problems.

A key aspect of the usefulness of the EM algorithm in multinomial missing data problems is that no sums of terms $p_{j}(\vartheta)$ appear inside the logarithms arising in the maximization-step. Especially in so-called log-linear contingency-table models with some missing cell-counts, where the $p_{j}(\vartheta)$ have some multiplicative structure, this is very useful!

SPECIAL EXAMPLE FROM THE ORIGINAL EM PAPER

This example fits into the structure of the general multinomial example, with scalar unknown parameter $\vartheta=\pi, K=3, C=5$, and

$$
p_{1}(\pi)=p_{2}(\pi)=\frac{1-\pi}{4}, \quad p_{3}(\pi)=p_{4}(\pi)=\frac{\pi}{4}, \quad p_{5}(\pi)=\frac{1}{2}
$$

The cell-counts given as data in Dempster, Laird \& Rubin (1978) are:
$\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=(18,20,34,125)$. Appealing to the formulas above, we find that the complete-data M-step involves maximizing $\sum_{j=1}^{3} X_{j} \log p_{j}(\pi)+$ $\sum_{j=4}^{5} Y_{j} \log p_{j}(\pi)$. In this particular problem, we are equivalently maximizing $\left(X_{3}+Y_{4}\right) \log (\pi / 4)+\left(X_{1}+X_{2}\right) \log ((1-\pi) / 4)$, which leads to

$$
\hat{\pi}=\left(X_{3}+Y_{4}\right) /\left(n-Y_{5}\right)
$$

Substituting the E-step imputed valued for the Y_{j} gives the EM iteration explicitly, starting from initial guess π_{1}, as:

$$
\begin{gathered}
\pi_{2}=\left(X_{3}+X_{4} \cdot \frac{\pi_{1} / 4}{1 / 2+\pi_{1} / 4}\right) /\left(n-X_{4} \cdot \frac{1 / 2}{1 / 2+\pi_{1} / 4}\right) \\
=\frac{34+125 \cdot \frac{\pi_{1}}{2+\pi_{1}}}{197-125 \cdot \frac{2}{2+\pi_{1}}}=\frac{68+159 \pi_{1}}{144+197 \pi_{1}}
\end{gathered}
$$

In this little example, EM iterates the mapping $h(\pi) \equiv(68+159 \pi) /(144+$ 197π) to find the fixed-point. (The unique fixed-point $\pi=0.6268$ solves $h(\pi)=\pi$, which is a quadratic equation.) The Quasi-Newton optimization of the marginal likelihood is messier but, using a modern computer, quicker and more reliable.
> optimize(function(x) $38 * \log (1-x)+34 * \log (x)+125 * \log (x+2)$, c(.01, .99), max=T)\$max
[1] 0.6268036
$>\mathrm{h}<-$ function(x$)(159 * \mathrm{x}+68) /(197 * \mathrm{x}+144)$
$\mathrm{x}<-.5$; for (i in 1:6) $\{\mathrm{x}<-\mathrm{h}(\mathrm{x})$ cat(round $(\mathrm{x}, 5)$," $\backslash \mathrm{n} ")\}$
0.60825
0.62432
0.62649
0.62678
0.62682 \#\#\# converged to 5 places after 5 iterations

General Example 2. Consider 'mixture' data X_{i} which are iid continuously distributed rv's with density

$$
f_{X}(x)=p e^{-x}+\lambda(1-p) e^{-\lambda x}, \quad x>0
$$

where $\vartheta=(p, \lambda) \in(0,1) \times[0, \infty)$ is the unknown parameter. These r.v.'s are of mixture type because they have the same density as random variables

$$
X_{i}=\epsilon_{i} U_{i}+\left(1-\epsilon_{i}\right) V_{i} \quad U_{i} \sim \operatorname{Expon}(1), \quad V_{i} \sim \operatorname{Expon}(\lambda)
$$

where $\epsilon_{i} \sim \operatorname{Binom}(1, p)$ is independent of $\left(U_{i}, V_{i}\right)$. The marginal density for the observed variables is f_{X}, but the problem would be much simpler to analyze with the 'complete' data $\left(X_{i}, \epsilon_{i}\right), i=1, \ldots, n$. Now the E-step of the EM algorithm based on observing only $\mathbf{X}=\left(X_{i}, i=1, \ldots, n\right)$ consists of calculating

$$
E_{\vartheta_{1}}(\epsilon \mid X)=\frac{p_{1} e^{-X}}{p_{1} e^{-X}+\lambda_{1}\left(1-p_{1}\right) e^{-\lambda_{1} X}}=\epsilon^{*}\left(X, \vartheta_{1}\right)=\epsilon^{*}
$$

and then substituting to obtain

$$
\begin{gathered}
\left.E_{\vartheta_{1}} \log p_{\epsilon \mid X}(\epsilon \mid X, \vartheta)\right)=\epsilon^{*} \log \left(\frac{p e^{-X}}{p e^{-X}+\lambda(1-p) e^{-\lambda X}}\right) \\
+\left(1-\epsilon^{*}\right) \log \left(\frac{\lambda(1-p) e^{-\lambda X}}{p e^{-X}+\lambda(1-p) e^{-\lambda X}}\right)
\end{gathered}
$$

As a result, starting from initial guess $\vartheta_{1}=\left(\lambda_{1}, p_{1}\right)$, the M-step of the EM algorithm is to maximize the 'complete-data log-likelihood' for the data
$\left(X_{i}, \epsilon^{*}\left(X_{i}, \vartheta_{1}\right), i=1, \ldots, n\right)$, which is given simply in terms of

$$
m^{*}=\sum_{i=1}^{n} \epsilon^{*}\left(X_{i}, \vartheta_{1}\right) \quad, \quad \bar{U}=\left(m^{*}\right)^{-1} \sum_{i=1}^{n} X_{i} \epsilon^{*}\left(X_{i}, \vartheta_{1}\right)
$$

and

$$
\bar{V}=\left(n-m^{*}\right)^{-1} \sum_{i=1}^{n} X_{i}\left(1-\epsilon^{*}\left(X_{i}, \vartheta_{1}\right)\right)
$$

as

$$
m^{*}(\log p-\bar{U})+\left(n-m^{*}\right)(\log (\lambda(1-p))-\lambda \bar{V})
$$

Thus the M-step is given in closed form by maximizing the last expression in (λ, p) to obtain

$$
p_{2}=m^{*} / n \quad, \quad \lambda_{2}=1 / \bar{V}
$$

In summary, the entire EM iteration-step in this example, starting from initial guess $\vartheta_{1}=\left(\lambda_{1}, p_{1}\right)$, is given in closed form by:

$$
\begin{gathered}
p_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{p_{1} e^{-X_{i}}}{p_{1} e^{-X_{i}}+\lambda_{1}\left(1-p_{1}\right) e^{-\lambda_{1} X_{i}}} \\
1 / \lambda_{2}=\frac{1}{n\left(1-p_{2}\right)} \sum_{i=1}^{n} \frac{\left(1-p_{1}\right) \lambda_{1} X_{i} e^{-\lambda_{1} X_{i}}}{p_{1} e^{-X_{i}}+\lambda_{1}\left(1-p_{1}\right) e^{-\lambda_{1} X_{i}}}
\end{gathered}
$$

We implement this, and evaluate the results in a little simulated dataset, as follows.

```
> EMiter
function(thet, Xvec)
{
## On input, thet is the vector consisting of old values of
## p, lambda in General Example 2 of Notes, and Xvec is
## the observed data vector. The output is the new theta.
    frac <- 1/(1 + (1/thet[1] - 1) * thet[2] * exp((
    1 - thet[2]) * Xvec))
    pnew <- mean(frac)
    lamnew <- (1 - pnew)/mean(Xvec * (1 - frac))
```

```
    list(thet = c(pnew, lamnew), logL = sum(log(pnew * exp(
    - Xvec) + (1 - pnew) * lamnew * exp( - lamnew * Xvec))))
}
> epsv <- rbinom(10000, 1, .6)
    Xv <- rexp(10000)/exp(.3*(1-epsv))
> round(c(mean(epsv), .4/exp(.3)+.6, mean(Xv)),5)
[1] 0.60050 0.89633 0.89459
> theta <- c(.5,1.5)
## Initial log-likelihood
> sum(log(.5 * exp( - Xv) + .5*1.5*exp(-1.5*Xv))) ## = -8908.9
## Log-likelihood at true values:
> sum(log(.6 * exp( - Xv) + .4*exp(.3-exp(.3)*Xv)))## -8883.5
> unlist(EMiter(theta,Xv)) ## values after one EM iteration
        thet1 thet2 logL
    0.5069983 1.413503 -8893.04
> for(i in 1:100) {
    tmpitr <- EMiter(theta,Xv)
    theta <<- tmpitr$thet
    if(i %% 5 ==0) cat(round(unlist(tmpitr),5),"\n") }
    0.51477 1.30256 -8883.91956
0.51623 1.28736-8883.74519
0.51689 1.28652 -8883.74114
0.51749 1.28686 -8883.73824
0.51807 1.28728-8883.73536
0.51866 1.28772 -8883.73248
0.51925 1.28815 -8883.72962
0.51983 1.28859 -8883.72677
0.52042 1.28903 -8883.72393
0.521 1.28947 -8883.72111
0.52158 1.2899 -8883.71829
0.52216 1.29034-8883.71549
0.52274 1.29078-8883.7127
0.52331 1.29122 -8883.70992
```

```
0.52389 1.29165 -8883.70716
0.52446 1.29209 -8883.7044
0.52504 1.29253-8883.70166
0.52561 1.29297-8883.69893
0.52618 1.29341 -8883.69622
0.52675 1.29385-8883.69351
> for(i in 1:100) theta <- EMiter(theta,Xv)$thet
        unlist(EMiter(theta,Xv))
            thet1 thet2 logL
    0.5379237 1.302709 -8883.642
> for(i in 1:100) theta <- EMiter(theta,Xv)$thet
    unlist(EMiter(theta,Xv))
> thet1 thet2 logL
    0.5483496 1.311421 -8883.596
## Convergence is painfully slow !!!
> nlminb(c(0.5, 1.5), function(x) - sum(log(x[1] * exp( - Xv) +
            (1 - x[1]) * x[2] * exp( - x[2] * Xv))), lower
                        =c(0.01, 0.1), upper = c(0.99, 10))[1:4]
$parameters:
[1] 0.6308609 1.3997779
$objective:
[1] 8883.386
$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
```

\$grad.norm:
[1] 0.001797887

Note the very slow convergence of the EM algorithm implemented and tested here. The maximized $\log L i k$ must be larger than -8883.5 , since that is the value at the true parameters $\left(p=.6, \lambda=e^{3}\right)$, but from the not-too-awful starting values $p_{1}=.5, \lambda=1.5$, it took more than 300 EM iterations to get there! As can be seen from the final converged maximization via nlminb, the final maximized $\log L i k$ is -8883.39 .

