8 Notes on EM Algorithm

8.1 EM Algorithm for Multinomial & Mixture Data

General Example 1. Suppose that for fixed integers $1 \le K < C$, cell-counts $\mathbf{X} = (X_1, \dots, X_K)$ are observed, and cell-counts $\mathbf{Y} = (Y_{K+1}, \dots, Y_C)$ cannot be observed, where

$$(X_1, \ldots, X_K, Y_{K+1}, \ldots, Y_C) \sim Multinomial(n, p_j(\vartheta), j = 1, \ldots, C)$$

Here ϑ is an unknown parameter of dimension $d \leq K$, and the functions $p_j(\vartheta)$ which share ϑ as a parameter are sufficiently smooth. Also denote

$$X_{K+1} = n - X_1 - \dots - X_K = \sum_{j=K+1}^{C} Y_j$$

For notational convenience, define

$$q_K(\vartheta) = 1 - p_1(\vartheta) - \dots - p_K(\vartheta)$$

In this setting, we express the conditional joint density of \mathbf{Y} given \mathbf{X} by

$$f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{X}, \vartheta) = \exp(\sum_{j=K+1}^{C} y_j \log(\frac{p_j(\vartheta)}{q_K(\vartheta)})) \cdot {X_{K+1} \choose Y_{K+1}, \dots, Y_C}$$

It follows that the *E-step* of the EM algorithm replaces $E_{\vartheta_1} \Big(\log f_{\mathbf{Y}|\mathbf{X}}(\mathbf{Y}|\mathbf{X}, \vartheta) \Big)$ by

$$X_{K+1} \sum_{j=K+1}^{C} \frac{p_j(\vartheta_1)}{q_K(\vartheta_1)} \log \left(\frac{p_j(\vartheta)}{q_K(\vartheta)}\right) + \log \left(\frac{X_{K+1}}{Y_{K+1}, \dots, Y_C}\right)$$

or equivalently, replaces Y_j by $X_{K+1} \cdot p_j(\vartheta_1)/q_K(\vartheta_1)$ for $j = K+1, \dots, C$.

To confirm that the definition of log-likelihood and conditional log-likelihood terms as above, without multinomial coefficients, is legitimate, we observe that the property needed in the proof of log-likelihood improvement for EM iterations holds, that is,

$$E_{\vartheta} \Big(\log L_{\mathbf{Y}|X}(n_{C+1}, \dots, n_K \mid \mathbf{X}, \vartheta) - \log L_{\mathbf{Y}|X}(n_{C+1}, \dots, n_K \mid \mathbf{X}, \vartheta_1) \Big) \ge 0$$

or equivalently, for all ϑ , ϑ_1 ,

$$\sum_{j=C+1}^{K} \frac{p_j(\vartheta)}{q(\vartheta)} \log \frac{p_j(\vartheta) q(\vartheta_1)}{q(\vartheta) p_j(\vartheta_1)} \ge 0$$

But this is a standard, discrete version of the famous 'Information Inequality' proved more generally in the form $\int f(x) \log(f(x)/g(x)) d\nu(x) \ge 0$ for probability densities with respect to a measure ν , using Jensen's Inequality.

In the multinomial setting, we express the conditional likelihood for \mathbf{Y} given \mathbf{X} by

$$L_{\mathbf{Y}|\mathbf{X}}(n_{C+1}, \dots, n_K | \mathbf{X}, \vartheta) = \exp(\sum_{j=C+1}^K n_j \log(\frac{p_j(\vartheta)}{q(\vartheta)}))$$

The *E-step* of the EM algorithm replaces this conditional log-likelihood, when the current parameter-iterate is ϑ_1 , by

$$E_{\vartheta_1}\Big(\log L_{\mathbf{Y}|\mathbf{X}}(\mathbf{Y}|\mathbf{X},\,\vartheta)\;\Big|\;\mathbf{X}\Big) \quad = \quad n^* \sum_{j=C+1}^K \frac{p_j(\vartheta_1)}{q(\vartheta_1)}\,\log\Big(\frac{p_j(\vartheta)}{q(\vartheta)}\Big)$$

This expression is also equal to $\log L_{\mathbf{Y}|\mathbf{X}}(n_{C+1}^*,\ldots,n_K^*|\mathbf{X},\vartheta)$, where $n_j^*=E_{\vartheta_1}(n_j^*|\mathbf{X})=n^*\cdot p_j(\vartheta_1)/q(\vartheta_1)$ for $j=C+1,\ldots,K$.

Thus we have the following comparison between maximization approaches. First, the complete-data likelihood to maximize, if \mathbf{Y} could also be observed, would be

$$\sum_{j=1}^{K} X_j \log p_j(\vartheta) + X_{K+1} \log q_K(\vartheta) + \sum_{j=K+1}^{C} Y_j \log \frac{p_j(\vartheta)}{q_K(\vartheta)}$$

while the crude marginal-observed-data likelihood to maximize is

$$\sum_{j=1}^{K} X_j \log p_j(\vartheta) + X_{K+1} \log q_K(\vartheta)$$

On the other hand, the M-step of the EM algorithm, after replacement of the unobservable Y_j values in the complete-data likelihood by their E-step imputed values, is

$$\sum_{j=1}^{K} X_j \log p_j(\vartheta) + X_{K+1} \log q_K(\vartheta) + X_{K+1} \sum_{j=K+1}^{C} \frac{p_j(\vartheta_1)}{q_K(\vartheta_1)} \log \frac{p_j(\vartheta)}{q_K(\vartheta)}$$

$$= \sum_{j=1}^{K} X_j \log p_j(\vartheta) + X_{K+1} \sum_{j=K+1}^{C} \frac{p_j(\vartheta_1)}{q_K(\vartheta_1)} \log p_j(\vartheta)$$

Note that the M-step involves a step of maximizing the complete-data likelihood using imputed data for the Y_j 's, which will be very easy in some problems.

A key aspect of the usefulness of the EM algorithm in multinomial missing data problems is that no sums of terms $p_j(\vartheta)$ appear inside the logarithms arising in the maximization-step. Especially in so-called log-linear contingency-table models with some missing cell-counts, where the $p_j(\vartheta)$ have some multiplicative structure, this is very useful!

SPECIAL EXAMPLE FROM THE ORIGINAL EM PAPER

This example fits into the structure of the general multinomial example, with scalar unknown parameter $\vartheta = \pi$, K = 3, C = 5, and

$$p_1(\pi) = p_2(\pi) = \frac{1-\pi}{4}, \quad p_3(\pi) = p_4(\pi) = \frac{\pi}{4}, \quad p_5(\pi) = \frac{1}{2}$$

The cell-counts given as data in Dempster, Laird & Rubin (1978) are:

 $(X_1, X_2, X_3, X_4) = (18, 20, 34, 125)$. Appealing to the formulas above, we find that the complete-data M-step involves maximizing $\sum_{j=1}^3 X_j \log p_j(\pi) + \sum_{j=4}^5 Y_j \log p_j(\pi)$. In this particular problem , we are equivalently maximizing $(X_3 + Y_4) \log(\pi/4) + (X_1 + X_2) \log((1 - \pi)/4)$, which leads to

$$\hat{\pi} = (X_3 + Y_4)/(n - Y_5)$$

Substituting the E-step imputed valued for the Y_j gives the EM iteration explicitly, starting from initial guess π_1 , as:

$$\pi_2 = \left(X_3 + X_4 \cdot \frac{\pi_1/4}{1/2 + \pi_1/4}\right) / \left(n - X_4 \cdot \frac{1/2}{1/2 + \pi_1/4}\right)$$
$$= \frac{34 + 125 \cdot \frac{\pi_1}{2 + \pi_1}}{197 - 125 \cdot \frac{2}{2 + \pi_1}} = \frac{68 + 159 \,\pi_1}{144 + 197 \,\pi_1}$$

In this little example, EM iterates the mapping $h(\pi) \equiv (68+159\pi)/(144+197\pi)$ to find the fixed-point. (The unique fixed-point $\pi = 0.6268$ solves $h(\pi) = \pi$, which is a quadratic equation.) The Quasi-Newton optimization of the marginal likelihood is messier but, using a modern computer, quicker and more reliable.

```
> optimize(function(x) 38*log(1-x)+34*log(x)+125*log(x+2),
    c(.01,.99), max=T)$max
[1] 0.6268036
> h <- function(x) (159 * x + 68)/(197 * x + 144)
    x<- .5; for (i in 1:6) {x <- h(x) cat(round(x,5)," \n")}
0.60825
0.62432
0.62649
0.62678
0.62682 ### converged to 5 places after 5 iterations</pre>
```

General Example 2. Consider 'mixture' data X_i which are *iid* continuously distributed rv's with density

$$f_X(x) = pe^{-x} + \lambda (1-p) e^{-\lambda x}, \quad x > 0$$

where $\vartheta = (p, \lambda) \in (0, 1) \times [0, \infty)$ is the unknown parameter. These r.v.'s are of *mixture* type because they have the same density as random variables

$$X_i = \epsilon_i U_i + (1 - \epsilon_i) V_i \quad U_i \sim Expon(1) , \quad V_i \sim Expon(\lambda)$$

where $\epsilon_i \sim Binom(1, p)$ is independent of (U_i, V_i) . The marginal density for the observed variables is f_X , but the problem would be much simpler to analyze with the 'complete' data (X_i, ϵ_i) , i = 1, ..., n. Now the *E-step* of the EM algorithm based on observing only $\mathbf{X} = (X_i, i = 1, ..., n)$ consists of calculating

$$E_{\vartheta_1}(\epsilon \,|\, X) = \frac{p_1 \,e^{-X}}{p_1 \,e^{-X} + \lambda_1 \,(1 - p_1) \,e^{-\lambda_1 \,X}} = \epsilon^*(X, \vartheta_1) = \epsilon^*$$

and then substituting to obtain

$$E_{\vartheta_1} \log p_{\epsilon|X}(\epsilon \mid X, \vartheta)) = \epsilon^* \log \left(\frac{p e^{-X}}{p e^{-X} + \lambda (1 - p) e^{-\lambda X}} \right)$$
$$+ (1 - \epsilon^*) \log \left(\frac{\lambda (1 - p) e^{-\lambda X}}{p e^{-X} + \lambda (1 - p) e^{-\lambda X}} \right)$$

As a result, starting from initial guess $\vartheta_1 = (\lambda_1, p_1)$, the *M-step* of the EM algorithm is to maximize the 'complete-data log-likelihood' for the data

 $(X_i, \epsilon^*(X_i, \vartheta_1), i = 1, \dots, n)$, which is given simply in terms of

$$m^* = \sum_{i=1}^n \epsilon^*(X_i, \vartheta_1)$$
 , $\overline{U} = (m^*)^{-1} \sum_{i=1}^n X_i \epsilon^*(X_i, \vartheta_1)$

and

$$\overline{V} = (n - m^*)^{-1} \sum_{i=1}^{n} X_i (1 - \epsilon^*(X_i, \vartheta_1))$$

as

$$m^* (\log p - \overline{U}) + (n - m^*) (\log(\lambda(1 - p)) - \lambda \overline{V})$$

Thus the *M-step* is given in closed form by maximizing the last expression in (λ, p) to obtain

$$p_2 = m^*/n$$
 , $\lambda_2 = 1/\overline{V}$

In summary, the entire EM iteration-step in this example, starting from initial guess $\vartheta_1 = (\lambda_1, p_1)$, is given in closed form by:

$$p_{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{p_{1} e^{-X_{i}}}{p_{1} e^{-X_{i}} + \lambda_{1} (1 - p_{1}) e^{-\lambda_{1} X_{i}}}$$

$$1/\lambda_{2} = \frac{1}{n(1 - p_{2})} \sum_{i=1}^{n} \frac{(1 - p_{1})\lambda_{1} X_{i} e^{-\lambda_{1} X_{i}}}{p_{1} e^{-X_{i}} + \lambda_{1} (1 - p_{1}) e^{-\lambda_{1} X_{i}}}$$

We implement this, and evaluate the results in a little simulated dataset, as follows.

```
list(thet = c(pnew, lamnew), logL = sum(log(pnew * exp(
     - Xvec) + (1 - pnew) * lamnew * exp( - lamnew * Xvec))))
}
> epsv <- rbinom(10000, 1, .6)
  Xv \leftarrow rexp(10000)/exp(.3*(1-epsv))
> round(c(mean(epsv), .4/exp(.3)+.6, mean(Xv)),5)
[1] 0.60050 0.89633 0.89459
> theta <- c(.5,1.5)
## Initial log-likelihood
> sum(log(.5 * exp( - Xv) + .5*1.5*exp(-1.5*Xv))) ## = -8908.9
## Log-likelihood at true values:
> sum(log(.6 * exp( - Xv) + .4*exp(.3-exp(.3)*Xv)))## -8883.5
                             ## values after one EM iteration
> unlist(EMiter(theta, Xv))
    thet1
             thet2
                        logL
 0.5069983 1.413503 -8893.04
> for(i in 1:100) {
       tmpitr <- EMiter(theta, Xv)</pre>
       theta <<- tmpitr$thet
       if(i %% 5 ==0) cat(round(unlist(tmpitr),5),"\n") }
       0.51477 1.30256 -8883.91956
0.51623 1.28736 -8883.74519
0.51689 1.28652 -8883.74114
0.51749 1.28686 -8883.73824
0.51807 1.28728 -8883.73536
0.51866 1.28772 -8883.73248
0.51925 1.28815 -8883.72962
0.51983 1.28859 -8883.72677
0.52042 1.28903 -8883.72393
0.521 1.28947 -8883.72111
0.52158 1.2899 -8883.71829
0.52216 1.29034 -8883.71549
0.52274 1.29078 -8883.7127
0.52331 1.29122 -8883.70992
```

```
0.52389 1.29165 -8883.70716
0.52446 1.29209 -8883.7044
0.52504 1.29253 -8883.70166
0.52561 1.29297 -8883.69893
0.52618 1.29341 -8883.69622
0.52675 1.29385 -8883.69351
> for(i in 1:100) theta <- EMiter(theta, Xv)$thet</pre>
  unlist(EMiter(theta, Xv))
     thet1
              thet2
                         logL
 0.5379237 1.302709 -8883.642
> for(i in 1:100) theta <- EMiter(theta, Xv)$thet
  unlist(EMiter(theta, Xv))
     thet1
              thet2
                          logL
 0.5483496 1.311421 -8883.596
## Convergence is painfully slow !!!
> nlminb(c(0.5, 1.5), function(x) - sum(log(x[1] * exp( - Xv) +
     (1 - x[1]) * x[2] * exp( - x[2] * Xv))), lower
         = c(0.01, 0.1), upper = c(0.99, 10))[1:4]
$parameters:
[1] 0.6308609 1.3997779
$objective:
[1] 8883.386
$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
$grad.norm:
[1] 0.001797887
```

Note the very slow convergence of the EM algorithm implemented and tested here. The maximized logLik must be larger than -8883.5, since that is the value at the true parameters (p=.6, $\lambda=e^{.3}$), but from the not-too-awful starting values $p_1=.5$, $\lambda=1.5$, it took more than 300 EM iterations to get there! As can be seen from the final converged maximization via **nlminb**, the final maximized logLik is -8883.39.