
Adapted from P. Smith, J. Picka

10 Regression Analysis in SAS

The following SAS code produces statistical descriptions and a simple regression
analysis of a small data set. The data are the introductory example from Draper
and Smith (1998).

The DATA step causes SAS to read data values directly from the input stream.
In this example, the goal is to predict monthly steam usage (STEAMUSE) from
average monthly temperature (TEMP), using a straight line regression.

Statistical characteristics of the data are examined using PROC UNIVARIATE.
The PLOT option in the PROC UNIVARIATE statement cause SAS to produce crude
histograms and boxplots. The NORMAL option causes SAS to test the hypothesis
that the variable has a normal distribution. These options are given for illustra-
tive purposes only, since we are not interested in the distribution of TEMP and
do not believe that the STEAMUSE observations are identically distributed. PROC

UNIVARIATE produces lots of output and is mainly used for exploratory purposes.

It is always useful to obtain scatter plots of the raw data in regression problems.
The PROC PLOT step generates crude printer plots, but in this case it is sufficient to
show that there is a rough linear trend with a negative slope and no wild outliers.

The regression analysis is performed using PROC REG. In this example we only
specify the model to be estimated (in the MODEL statement). It is possible to get
much more: plots, diagnostics and tests of model assumptions.

The PROC GPLOT step produces a high-resolution graph of the raw data with
the regression line superimposed. The form of the graph is specified in the SYMBOL
statement, which specifies that a least squares regression line should be used to
“interpolate” between data points and that raw data points should be indicated
by plus signs.

options ls=70 ;

title1 ’STEAM DATA FROM CHAPTER 1 OF DRAPER & SMITH’ ;

data steam ;

input steamuse temp @@ ; /* Note that SAS requires ONLY 2 obs

per line (for 2 variables) without the @@ at end of input line. */

datalines ;

10.98 35.3 11.13 29.7 12.51 30.8 8.40 58.8 9.27 61.4
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8.73 71.3 6.36 74.4 8.50 76.7 7.82 70.7 9.14 57.5

8.24 46.4 12.19 28.9 11.88 28.1 9.57 39.1 10.94 46.8

9.58 48.5 10.09 59.3 8.11 70.0 6.83 70.0 8.88 74.5

7.68 72.1 8.47 58.1 8.86 44.6 10.36 33.4 11.08 28.6

;

proc univariate data=steam plot normal ;

var steamuse temp ;

title2 ’Univariate Descriptive Statistics’ ;

proc plot data=steam ;

title2 ’Scatterplot of Raw Data’ ;

plot steamuse*temp ;

proc reg data=steam ;

title2 ’Least Squares Analysis’ ;

model steamuse = temp ;

/* NOTE: don’t need ‘run’ between PROC’s */

proc gplot data=steam ;

symbol i=rl value=PLUS ;

plot steamuse*temp ;

title2 ’Observed Values and Estimated Regression Line’ ;

run ;

The 25 data values produce about 3.5 pages of SAS output. Shorter output
could have been generated using PROC MEANS or PROC CORR. However, these pro-
cedures can not produce histograms or test for normality.

The regression output from PROC REG appears on page 10 of the SAS output.
The Analysis of Variance table shows how the total variation

∑
(Yi− Ȳ )2 is decom-

posed into a component “explained” by the regression model and an unexplained
component described as Error. The F -test has a very small p value so that we
conclude that the straight line model Yi = β0 +β1xi + ei fits the data much better
than the trivial model Yi = β0 + ei. Because R2 = .7144, we conclude that 71% of
the variation in Y is “explained” by the linear regression relationship.

The estimated slope and intercept appear in the table headed “Parameter
Estimates.” For each parameter, the least squares estimate and estimated standard
error are given. Also, SAS provides a Student t test of the null hypothesis that
the true parameter is zero. Note that the square of the t statistic for the slope is
equal to the F statistic for the model, in accordance with the theory.
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STEAM DATA FROM CHAPTER 1 OF DRAPER & SMITH 1

Univariate Descriptive Statistics

The UNIVARIATE Procedure

Variable: steamuse

Moments

N 25 Sum Weights 25

Mean 9.424 Sum Observations 235.6

Std Deviation 1.63064149 Variance 2.65899167

Skewness 0.21135583 Kurtosis -0.6061937

Uncorrected SS 2284.1102 Corrected SS 63.8158

Coeff Variation 17.3030718 Std Error Mean 0.3261283

...

The UNIVARIATE Procedure

Variable: steamuse

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.971215 Pr < W 0.6760

Kolmogorov-Smirnov D 0.110663 Pr > D >0.1500

Cramer-von Mises W-Sq 0.055016 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.310084 Pr > A-Sq >0.2500

...

The UNIVARIATE Procedure

Variable: steamuse

...

Stem Leaf # Boxplot

12 25 2 |

11 0119 4 |

10 149 3 +-----+

9 1366 4 *--+--*

8 12455799 8 +-----+

7 78 2 |

6 48 2 |

----+----+----+----+
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Variable: steamuse

Normal Probability Plot

12.5+ *++++*+

| *+*+*++

| ***+*+

9.5+ ++****

| **+******

| +*+*++

6.5+ *++++*

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

The UNIVARIATE Procedure

Variable: temp

Moments

N 25 Sum Weights 25

Mean 52.6 Sum Observations 1315

Std Deviation 17.2655968 Variance 298.100833

Skewness -0.1157664 Kurtosis -1.5262541

Uncorrected SS 76323.42 Corrected SS 7154.42

Coeff Variation 32.8243285 Std Error Mean 3.45311936

...

Variable: temp

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.897492 Pr < W 0.0162

Kolmogorov-Smirnov D 0.163221 Pr > D 0.0847

Cramer-von Mises W-Sq 0.115956 Pr > W-Sq 0.0676

Anderson-Darling A-Sq 0.826067 Pr > A-Sq 0.0290

...
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STEAM DATA FROM CHAPTER 1 OF DRAPER & SMITH 9

Scatterplot of Raw Data

Plot of steamuse*temp. Legend: A = 1 obs, B = 2 obs, etc.
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Least Squares Analysis

The REG Procedure

Model: MODEL1

Dependent Variable: steamuse

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 45.59240 45.59240 57.54 <.0001

Error 23 18.22340 0.79232

Corrected Total 24 63.81580

Root MSE 0.89012 R-Square 0.7144

Dependent Mean 9.42400 Adj R-Sq 0.7020

Coeff Var 9.44529

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 13.62299 0.58146 23.43 <.0001

temp 1 -0.07983 0.01052 -7.59 <.0001

We will see in the next segment of this handout that one can calculate ‘by
hand’ how far out individual residuals are from a regression-model fit in Splus.
To do this more automatically in SAS, try the INFLUENCE option within the
MODEL statement of PROC REG. Another option you can use to highlight special
‘outlying’ features of individual observations is the COOKD output keyword under
PROC REG.
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Splus Example, 3/31/03

----------------------

> steamdat <- matrix(c(10.98, 35.3, 11.13, 29.7, 12.51, 30.8, 8.40, 58.8,

+ 9.27, 61.4, 8.73, 71.3, 6.36, 74.4, 8.50, 76.7, 7.82, 70.7, 9.14, 57.5,

+ 8.24, 46.4, 12.19, 28.9, 11.88, 28.1, 9.57, 39.1, 10.94, 46.8, 9.58,

+ 48.5, 10.09, 59.3, 8.11, 70.0, 6.83, 70.0, 8.88, 74.5, 7.68, 72.1,

+ 8.47, 58.1, 8.86, 44.6, 10.36, 33.4, 11.08, 28.6), ncol=2, byrow=T,

+ dimnames=list(NULL,c("steamuse","temp")))

## This is the dataset used in the little SAS illustration for

## PROC REG above.

> motif()

> plot(steamdat[,2],steamdat[,1], xlab="Temp", ylab="Use",

main="Draper-Smith Steam Data Example")

## This produces a scatterplot, motivating line-fitting.

> lmtmp <- lm(steamuse ~ . , data=data.frame(steamdat))

> lmtmp

Call:

lm(formula = steamuse ~ ., data = data.frame(steamdat))

Coefficients:

(Intercept) temp

13.62299 -0.07982869

Degrees of freedom: 25 total; 23 residual

Residual standard error: 0.8901245

Value Std. Error t value Pr(>|t|)

(Intercept) 13.62298927 0.58146349 23.428795 0.00000e+00

temp -0.07982869 0.01052358 -7.585697 1.05495e-07

> names(lmtmp)

[1] "coefficients" "residuals" "fitted.values" "effects"

[5] "R" "rank" "assign" "df.residual"

[9] "contrasts" "terms" "call"

> lines(steamdat[,2], lmtmp$fitted, lty=3)

92



> names(summary(lmtmp))

[1] "call" "terms" "residuals" "coefficients" "sigma"

[6] "df" "r.squared" "fstatistic" "cov.unscaled" "correlation"

> dim(model.matrix(lmtmp))

[1] 25 2

### Next we do two things to show how to ‘interact’ with the plot.

### The first is purely graphical: we highlight a few of the points by

### pointing and clicking at them, using "identify":

> identify(steamdat[,2],steamdat[,1])

### Now click successively with left mouse-button over the three

### uppermost points in the plot and then the three lowermost,

### and then click middle mouse-button

[1] 3 15 17 11 19 7

> printgraph(file="Steamplot.ps")

### These are the indices of the points clicked on: a great way

### to identify outliers "visually"

More conventionally, we can try to identify outliers according to the

"hat matrix":

if X denotes the design-matrix (in this case the 25x2 matrix

model.matrix(lmtmp)) for a simple linear regression, for which the

fitted variance is

> summary(lmtmp)$sigma^2

[1] 0.7923217

> sum(lmtmp$residuals^2)/23

[1] 0.7923217

then the theoretical vector of variances for the residuals from the

linear-regression fit is

> rvar <- { mtmp <- model.matrix(lmtmp)

0.7923217*diag(diag(25)-mtmp %*% solve(t(mtmp) %*%

mtmp, t(mtmp))) }

So the ‘standardized residuals’ are:

> rstd <- lmtmp$resid/sqrt(rvar) ### standardized residuals

## of which only those with indices 3, 7, 11 seem ‘significant’:

93



> order(rstd)[c(1,25)]

[1] 11 3

> rstd[c(3,7,11)]

3 7 11

1.599349 -1.573203 -1.930487
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Figure 1: Scatterplot of Draper-Smith Steam Data including Splus fitted line

and points highlighted with the identify function. Of the selected points,

we found the standardized residuals of numbers 3, 7, 11 to be respectively

1.60, -1.57, -1.53.

If we had wanted to identify points by plotting the standardized residuals instead
of the row-indices, the Splus command would be:

> identify(steamdat[,2],steamdat[,1], labels=round(rstd,2)))
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10.1 Influential Points & Cook’s Distance

Various methods exist to quantify either how badly an individual point is repro-
duced by a regression model, or how important the individual point is in affecting
the values of fitted model parameters. Points which are very special by either of
these criteria can be called ‘outliers’ and can be considered for removal from the
dataset before reporting coefficients and assessing quality of fit, although removing
points is often a very bad idea because the reality often is that observed popula-
tions must be viewed as superpositions of distinct or latent subpopulations which
are not easy to recognize in advance.

We have already described under the Splus segment above the calculation of
standardized residuals, rstd in the example. This measures whether the discrep-
ancy between an observation and its predictor are larger than might occur by
chance. (Compare its square to percentage points for a chi-square random vari-
able with one degree of freedom.

Another approach to spotting residuals might be to plot lower and upper con-
fidence limits for each of the observations. In Splus, in the plot already displayed
in the Figure, we would do this with the statements

> lines(steamdat[,2],lmtmp$fitted + 1.645*sqrt(rvar), lty=6)

> lines(steamdat[,2],lmtmp$fitted -1.645*sqrt(rvar), lty=6)

Here we are calling points ‘extreme’ if their standardized residuals are significant
(two-sided) at the 10% level.

The value of Cook’s distance for each observation represents a measure of
the degree to which the predicted values change if the observation is left out of the
regression. If an observation has an unusually large value for the Cook’s distance,
it might be worth deleting it from the regression and seeing if the fit is improved.
If no significant change in the coefficient estimates or the root MSE occurs, it is
best not to delete the point from further analyses. (It might not be a good idea
to delete it even if it looks ‘influential’ in this sense.) There may be no influential
cases in a particular regression problem.

In SAS, the way to get a SAS output file with a calculation of predictors,
residuals, standardized (or studentized residuals, Cook’s distance, and lower and
upper confidence limits for all of the observation values, the code would be written:
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PROC REG data=SASstf.steam;

MODEL steamuse = temp / alpha=.05 INFLUENCE ;

OUTPUT out=SASstf.steamOUT predicted=steamhat

residual=steamrsd student=stdresid

cookd=steamcook lcl = lowstm ucl = histm;

run;

In the resulting output matrix, the steamcook column shows largest values (re-
spectively .152, .147, .122) for observations 3, 7, and 20. There is no direct corre-
spondence between absolute studentized residual and Cook’s distance, although it
is true that the very largest Cook’s distances almost always correspond to obser-
vations with large studentized residuals.

As a single indication of syntax and results for a Proc Gplot in SAS, consider
the following:

data steam;

set SASstf.steamout;

proc sort;

by temp;

symbol1 value = NONE color=black i=join line = 3 ;

symbol2 value = NONE color=black i=j l=10 ;

symbol3 value = circle color = black ;

symbol4 value = square color = black i=j line 6;

proc gplot data=steam ;

title "Simultaneous plotting example" ;

plot steamuse * temp = 3 lowstm * temp = 1

histm * temp = 2 steamhat * temp = 4 / overlay legend ;

run;

The output from this SAS code is given in the following figure:
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Figure 2: SAS plot of Draper-Smith Steam Data including fitted line and

lower and upper prediction-interval points calculated for individual observa-

tions.
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