
Adapted from P. Smith, and expanded

11 Factors, ANOVA, and Regression:

SAS versus Splus

Factors. A factor is a variable with finitely many values or levels which is treated
as a predictor within regression-type models. Factors can be used as qualitative
predictors by introducing k−1 dummy variables to represent a factor with k levels.
The objective is to parameterize a so-called analysis of variance model

yij = µ + αi + εij , i = 1, . . . , k, j = 1, . . . , r (1)

as a regression model. Imagine the response-variables yij as a vector Y = (Yν)
of length n = Ir, and that Fν is a categorical variable (which can take on the
possible levels f1, . . . , fk) . We express Y linearly in terms of the vector 1 of n

ones and of k − 1 additional columns C(l), l = 1, . . . , k − 1:

Y = b0 1 +
k−1∑

l=1

bl C
(l)

What we want to achieve by this is that the mean of an observation Yν for which
Fν = l has the two equivalent (using (1) representations

µ + αl = b0 +
k−1∑

i=1

bi C
(i)
ν (2)

The simplest coding of dummy variables, in a dataset with observation-index
ν = 1, . . . , n and categorical variable Fν (which can take on the possible levels
f1, . . . , fk) is to define columns

C(l)
ν = I[Fν=fl] , ν = 1, . . . , n

for each of l = 1, . . . , k − 1. In that case, from (2) we learn that

µ + αl = b0 + bl if l < k , and otherwise = b0

As its default, Splus uses so-called Helmert contrasts to define columns. To
show the pattern it uses, consider (in the case k = 5) the matrix with entry defining

C
(l)
ν whenever Fν is equal to the row-index i = 1, . . . k−1, and the column-index

l also ranges from 1 to k − 1:
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-1 -1 -1 -1

1 -1 -1 -1

0 2 -1 -1

0 0 3 -1

0 0 0 4

Another scheme for coding C
(l)
ν is designated contr.sum and in the case k = 5

has matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 -1 -1 -1

replacing the previous one.

Note that the contrasts chosen for a factor are associated with the factor
at the time of its creation. So for example, if aclass is a vector with character
components “a”, “b”, “c”, “d”, “e” which we want to turn into a factor aclass

with contr.sum contrasts, then we use the command

> aclass <- C(factor(aclass), contr=contr.sum)

Then whenever aclass is used as a categorical predictor in a linear model in Splus,
the contr.sum contrasts wqill be used to encode it.

While it would be clumsy to create and code dummy variables to represent
factors ‘by hand’, in either SAS or Splus, this construction is done automatically
in linear-model fitting with factor predictors, by lm or glm in Splus and by PROC
ANOVA or PROC GLM in SAS.

(Note: As mentioned in class, PROC ANOVA does not work correctly in all
problems involving qualitative predictors. PROC GLM will give correct results and
is considerably more powerful than PROC ANOVA. You should not use PROC
ANOVA except for models with “balance” and on systems where conserving mem-
ory is a prime consideration. All of the PROC ANOVA coding in Cody and Smith
will work identically under PROC GLM.)
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11.1 Analysis of Artificial Dataset

We proceed to generate a small simulated dataset in Splus, with which we can
illustrate various aspects of linear model fitting — especially the Analysis of Vari-
ance and associated Tables of sums of squares — in Splus and SAS with categorical
predictors.

Small Log to get Started with Splus Using Factors in Anova

====================================================4/7/03

> alphvec <- runif(5)

alphvec <- alphvec - mean(alphvec)

> round(alphvec,6)

[1] 0.020548 0.032814 0.109756 -0.387467 0.224349

> aclass <- C(factor(rep(letters[1:5],rep(20,5))), contr=contr.sum)

> levels(aclass)

[1] "a" "b" "c" "d" "e"

> attr(aclass,"levels")

[1] "a" "b" "c" "d" "e"

> Xv <- rnorm(100)

Zv <- 3*(runif(100)-0.4)

> Ydat <- 1.37 + rep(alphvec, rep(20,5)) +

2*Xv - Zv + rnorm(100)*0.75

> Ylm <- lm(Ydat ~ aclass + Xv + Zv)

> round(Ylm$coef,6)

(Intercept) aclass1 aclass2 aclass3 aclass4 Xv Zv

1.376631 0.00979 -0.080907 0.032477 -0.323643 1.927776 -0.99445

### This is OK: recall that the true coeffficient for Xv was 2, and

### for Zv was -1: but how do we recover the ‘class-mean’

### parameters alpha originally generated in the vector alphvec ?

> Ylm$contrasts

$aclass:

[,1] [,2] [,3] [,4]

a 1 0 0 0

b 0 1 0 0

c 0 0 1 0

d 0 0 0 1

e -1 -1 -1 -1
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### This shows how Splus coded the classes, as specified for aclass.

To see this in a more explicit and intepretable way, recall that

observations 10,30, 50, 70, 90 respectively have levels

"a","b","c","d","e":

> model.matrix(Ylm)[seq(10,90,20),]

(Intercept) aclass1 aclass2 aclass3 aclass4 Xv Zv

10 1 1 0 0 0 -0.6116110 0.1064593

30 1 0 1 0 0 -1.3854599 0.9958901

50 1 0 0 1 0 1.5509195 -0.6121052

70 1 0 0 0 1 -0.9070166 1.7867886

90 1 -1 -1 -1 -1 1.0122793 1.6386513

> sum(abs(model.matrix(Ylm) %*% Ylm$coef - Ylm$fitted))

[1] 2.375877e-14

## Thus in terms of the coefficients of the model, the (estimated)

## means for the five classes of aclass should be found as

## follows:

> c(model.matrix(Ylm)[seq(10,90,20),1:5] %*% Ylm$coef[1:5]

[1] 1.386422 1.295724 1.409109 1.052988 1.738914

> .Last.value - mean(.Last.value)

[1] 0.009790442 -0.080907097 0.032477362 -0.323643407 0.362282700

### THIS IS THE SET OF ESTIMATED CLASS-MEAN CONTRASTS

## (which sum to 0)

> alphvec

[1] 0.02054783 0.03281407 0.10975606 -0.38746695 0.22434899

### AND THIS WAS THE SET OF TRUE CLASS-MEAN CONTRASTS

### So there is not too bad a correspondence.

Also, note that we did not really need to fix or know the contrasts actually used
in coding the factors in order to display the means for the five aclass-determined
groups. All we needed was to apply the model.matrix in a set of rows with known
aclass level to the fitted coefficients ! Similarly, we can find the standard-errors
for the fitted class-means, as follows:
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> round(sqrt(diag(model.matrix(Ylm)[seq(10,90,20),1:5] %*%

summary(Ylm)$cov.unscaled[1:5,1:5] %*% t(model.matrix(Ylm)[

seq(10,90,20),1:5]))),4)

[1] 0.2355 0.2330 0.2269 0.2402 0.2242

So none of the estimated class-mean contrasts was actually significantly different
from 0 in this example ! However, there certainly were group differences with
respect to raw means:

> round(apply(matrix(Ydat, ncol=5),2,mean),4)

[1] 1.7012 0.9494 1.1916 0.2058 2.0572

> round(apply(matrix(Xv, ncol=5),2,mean),4)

[1] 0.3987 0.0844 0.0435 -0.0797 0.1340

> round(apply(matrix(Zv, ncol=5),2,mean),4)

[1] 0.4564 0.5120 0.3031 0.6973 -0.0604

We will refer to these means later on, in considering the SAS output.

### Now proceed to Analysis of Variance

> anova(Ylm) ### For comparison with SAS below

Analysis of Variance Table

Response: Ydat

Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value Pr(F)

aclass 4 40.7006 10.1751 15.6473 7.980251e-10

Xv 1 304.3097 304.3097 467.9659 0.000000e+00

Zv 1 62.6572 62.6572 96.3539 6.000000e-16

Residuals 93 60.4762 0.6503

> sum(Ylm$resid^2)

[1] 60.47621

> sum(lm(formula = Ydat ~ aclass + Xv)$resid^2)

[1] 123.1334 ### = 60.4762 + 62.6572

> sum(lm(formula = Ydat ~ aclass)$resid^2)

[1] 427.4432 ### = 123.1334 + 304.3097

> sum((Ydat-mean(Ydat))^2)

[1] 468.1437 ### = 427.4432 + 40.7006
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The cumulative sums of squares in the ANOVA Table, from the bottom up

starting with the final-model sum of squared residuals, can always be interpreted
as the sum of squared residuals from earlier stages of the model-fitting !

Finally, the estimated variance σ̂2 is always obtained as the residual sum of
squares divided by the number of observations reduced by number of estimated
coefficients.

> c(summary(Ylm)$sigma^2, Ylm$df, sum(Ylm$resid^2)/Ylm$df)

[1] 0.6502819 93.0000000 0.6502819

> write.table(cbind(Ydat= round(Ydat,7), Xv = round(Xv,7), Zv =

round(Zv,7), aclass), file="Yanov.dat", sep=" ")

> !more Yanov.datYdat Xv Zv aclass

-0.8356545 -0.121606 0.7943222 1

-0.0719519 0.3084737 1.229228 1

-0.850251 -1.0913033 -0.1884368 1

5.0168243 2.123058 0.3399656 1

3.280047 1.4878834 1.648248 1

-0.2809213 -0.204657 1.6208564 1

4.1190551 1.2060654 0.7857575 1

2.0874594 0.073946 -0.8112233 1

## Copied into emacs ASCII file to save, before invoking SAS.

## or ftp’d to ASCII file in cluster-machine.

Now we continue in SAS with the same data. The main new element is PROC
GLM, which makes use of the factor-variable aclass through the declaration-
statement: CLASS aclass ; the class means are requested through the MEANS
and LSMEANS statement-lines. We will take some pains below to interpret the
differences between the class-mean outputs generated from these two commands.

libname SASstf "SASproj" ;

data SASstf.Yanov ;

infile "Yanov.dat" ;

input Ydat Xv Zv aclass $ ;

if _N_>1 ; /* to skip first line */

run;

/* Now have created permanent dataset "yanov.sas7bdat" */
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proc glm data= SASstf.Yanov ;

class aclass;

model Ydat = aclass Xv Zv ;

means aclass / duncan ;

/* Duncan relates to the grouping and clustering of the

class means. But if we want the class-mena parameters

adjusted for the effects of the continuous predictors

Xv, Zv, then we need an LSMEANS statement instead !

LSMEANS aclass;

run;

The edited SAS follow, for comparison with the quantities previously estimated in
Splus. First comes the ‘core’ output from PROC GLM.

SAS OUTPUT, edited

Dependent Variable: Ydat

...

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 6 407.66751 67.9446 104.48 <.0001

Error 93 60.47622 0.6503

Corr. Tot. 99 468.14373

R-Square Coeff Var Root MSE Ydat Mean

0.870817 66.04187 0.806401 1.221044

Source DF Type I SS Mean Square F Value Pr > F

aclass 4 40.7006 10.1751 15.65 <.0001

Xv 1 304.3097 304.3097 467.97 <.0001

Zv 1 62.6572 62.6572 96.35 <.0001

Source DF Type III SS Mean Square F Value Pr > F

aclass 4 4.4248 1.1062 1.70 0.1564

Xv 1 294.5692 294.5692 452.99 <.0001

Zv 1 62.6572 62.6572 96.35 <.0001

104



Next comes the output from the MEANS line of PROC GLM: these group-means
are not adjusted for the effects of the precitor-variables Xv, Zv !

Duncan’s Multiple Range Test for Ydat

NOTE: This test controls the Type I comparisonwise error rate,

not the experimentwise error rate. ...

Means with the same letter are not significantly different.

Duncan Grouping Mean N aclass

A 2.0572 20 5

A

A 1.7012 20 1

B 1.1916 20 3

B

B 0.9494 20 2

C 0.2058 20 4

Least Squares Means

aclass Ydat LSMEAN

1 1.23083484

2 1.14013731

3 1.25352177

4 0.89740100

5 1.58332711

Note that these class means are not exactly the same as the numbers previously
calculated in Splus: those were 1.386422, 1.295724, 1.409109, 1.052988, 1.738914.
However, after subtracting the grand mean of Ydat, which is 1.221044, from all of
these adjusted class means, we get the class-contrast valueswhich were previously
estimated in Splus. The discrepancy between the SAS-estimated LSmean numbers
and the numbers we estimated in Splus is due to the contribution to empirical mean
of the Xv and Zv terms in the model-fit: the estimated terms 1.927776 ∗ Xv −

0.994450 ∗ Zv have empirical mean -0.155587, which is also equal to 1.386422-
1.2308348.
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