
13 Notes on Markov Chain Monte Carlo

Markov Chain Monte Carlo is a big, and currently very rapidly developing,
subject in statistical computation. Many complex and multivariate types
of random data, useful for maximizing likelihood in missing-data settings or
for calculating expectations and conditional expectations in Bayesian analy-
sis, can be simulated in this way (generally, via the Metropolis-Hastings
Algorithm or the Gibbs Sampler, the two main simulation algorithms
understood under the heading of MCMC). We give a brief sketch of each of
these, and give a computational example of somewhat realistic complexity
connected with the simulation of conditional distribution for random effects
given the observed data in a random intercept logistic regression setting.

A good general reference for Markov Chain Monte Carlo topics is the
book

Monte Carlo Statistical Methods, by C. Robert and G. Casella, Springer-
Verlag 1999.

There is a good deal of background on continuous-state discrete-time Markov
Chains to understand, if you want a solid theoretical understanding of the
methods. In general, the idea and usefulness of the methods is that if you
want to estimate expectations via averages of simulated vector random val-
ues Xt from a density f(·), it is enough to simulate values of a Markov
Chain which asymptotically becomes stationary and has unique equilibrium
distribution with density f . In general, one deals with continuous-state
discrete-time chains. The main idea of the subject is given in the

Metropolis-Hastings Algorithm: fix an initial data-vector X0, and a con-
ditional density (or proposal distribution or transition kernel q(x|y), which
can be arbitrary except that it should (in both x, y arguments) have the
same support as f and for good properties of the algorithm should have
f(x)/q(x|y) uniformly bounded in x, y. Then simulate values Xt+1, t ≥ 0,
according to the Markovian inductive step,

Yt ∼ q(· |Xt) and ξt ∼ Unif [0, 1] independent

and

Xt+1 = Yt if ξt ≤
f(Yt) q(Xt |Yt)

f(Xt) q(Yt |Xt)
, otherwise = Xt
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The key idea of this algorithm is that the distribution of Xt+1 is a mixture
of that of Xt and Yt, so that if ρ(x, y) = min(1, f(y)q(x|y)/(f(x)q(y|x)),
then

fXt+1
(x) = fXt

(x)
∫

(1 − ρ(x, y))q(y|x)dy +
∫ ∫

ρ(x, y) q(y|z) fXt
(z) dzdy

≡
∫

K(x, z) fXt
(z)dz

Thus one can verify the so-called ‘detailed balance equation’ K(y, x) f(x) =
K(x, y) f(y), from which the reversibility of the Markov Chain Xt and
unique invariant measure (mutually absolutely continuous to the measure
f(x) dx) follow. The consequence is that f is an essentially unique invariant
density with given support.

The general idea of the Gibbs Sampler is apparently different but turns
out to be closely related. Suppose that one wants to simulate from a com-
plicated joint density h(X (1), . . . , X(p)) for which all of the conditional
densities of X (j) given the other (X (i) : 1 ≤ i ≤ p, i 6= j) are not
too hard to simulate from. Then it turns out that by alternately simulat-
ing successively for rotating values i the pieces X

(i)
t conditionally from

these densities, a Markov-chain equlibrium can again under general condi-
tions guarantee the asymptotic stationarity of the simulated concatenated
vectors (X

(j)
t , 1 ≤ j ≤ p) with the desired density as essentially unqiue

invariant density. This approach is particularly fruitful for carefully designed
hierarchical models.

13.1 Extended Example: Random-Intercept Logis-

tic Regression

Consider the problem of ML estimation based on independent trivariate data-
vectors ((Ri,Wi, ni), i = 1, . . . ,m) for parameters ϑ = (a, b, σ2) in the
following model: sample sizes ni and predictors Wi are either fixed design
constants (such that their histogram settles down to some reasonably stable
shape for large m) or are iid pairs with distribution not depending on the
parameters ϑ, and

Ui ∼ N (0, σ2) iid independent of {Wj}m
j=1
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Ri ∼ Binom(ni,
ea+bWi+Ui

1 + ea+bWi+Ui

) conditionally given {(Wj, Uj)}m
j=1

Our objective is therefore to maximize over (a, b, σ2)

m
∑

i=1

log
{

∫ e(a+bWi+u)Ri

(1 + ea+bWi+u)ni

· 1√
2πσ2

e−u2/(2σ2) du
}

(1)

Clearly, this kind of random-effect model is a ‘missing-data’ model in the
same sense as the models which are studied using the EM algorithm. The
model would be relatively simple to analyze if the intercept-effects Ui were
observable. Without observability of the Ui, one must either numerically
integrate the log-likelihood terms in (1) or simulate to estimate them. For
documentation of a numerical integration approach to accurate calculation
and maximization of log-likelihood for models including this one, see Tech-
nical Report #2 of Slud (2000) under

http://www.census.gov/hhes/www/saipe/tecrep.html

For an extended discussion of estimation strategies involving MCMC in
problems like the one discussed here, see

McCulloch, C. (1997) Maximum likelihood algorithms for generalized lin-
ear mixed models. Jour. Amer. Statist. Assoc. 92, 162-70.

A Direct Monte Carlo Method. In the ML problem posed here, the log-
likelihood terms could all be directly estimated via Monte Carlo by choosing
a large M , simulating an array (Vik, 1 ≤ i ≤ m, 1 ≤ k ≤ M) of iid

N (0, 1) random variables, and maximizing instead

m
∑

i=1

log
{

M−1
M
∑

k=1

e(a+bWi+σVik)Ri

(1 + ea+bWi+σVik)ni

}

(2)

This Monte Carlo evaluation of integrals could work here, but would not be
preferred to a numerical integration, e.g. by (adaptive) Gaussian quadra-
tures. The maximization, e.g. by Newton-Raphson, is feasible by either
method of evaluation of integrals, but quite costly computationally by this
Monte Carlo method, and not especially accurate if some of the ni are large.
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EM Algorithm Method. Another approach would be to use the EM
algorithm, if one could simulate {Uit}T

t=1 from the conditional distribution
of Ui given Xi, Wi. The E-step would then, for a fixed parameter-triple
ϑ1 = (a1, b1, σ

2
1), replace the i’th term of (1) by

T−1
T
∑

t=1

log

(

e(a+bWi+σUit)Ri

(1 + ea+bWi+σUit)ni

)

(3)

The M-step would maximize over ϑ = (a, b, σ2) the resulting (E-step esti-
mated conditional expected) log-likelihood summation, the summation over
i = 1, . . . ,m of (3), to find the next parameter-iterates ϑ2 = (a2, b2, σ

2
2).

So we continue this example by exploring how to simulate (without nu-
merical integration) approximately stationary random sequences from the
conditional distribution of Ui given (Ri,Wi). To keep the discussion sim-
ple, we restrict to the case ni = 1 and strip the subscript i. (In the more
complicated case of varying ni, one would use a Metropolis-Hastings idea
similar to the following one, but with g replaced by a normal distribution
designed to approximate the integrand in the (i’th term of) expression (1).

We adopt an ‘independent’ Metropolis-Hastings Algorithm, with q(x|y) ≡
g(x) ≡ e−x2/(2σ)2/

√
2πσ2. The algorithm takes the following form: ξt ∼

Unif [0, 1], Yt ∼ N (0, σ2) are simulated independently of each other and
of variables indexed smaller than t, and

Xt+1 = Yt if ξt ≤
e(Yt−Xt)R (1 + ea+bW+Xt)n

(1 + ea+bW+Yt)n
, otherwise = Xt

Our next task is to implement and test this algorithm in Splus. Here is a
general function to do it, using input-vectors Uv, Rv, nv, etav (respec-
tively corresponding to U, R, n, η = a + bW ) of the same length m, and
also using m × T matrices Um, Ym respectively of iid standard Uniform
and Normal(0, σ2) deviates.

> MHblk

function(Uv,Rv,etav, nv, sig, nblk=1) {

LR <- length(Rv)

Ym <- sig*matrix(rnorm(LR*nblk), ncol=nblk)

auxm <- matrix(runif(LR*nblk), ncol=nblk)
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Um <- array(0, dim=c(LR, nblk))

for(ctr in 1:nblk) {

Yv <- Ym[,ctr]

probs <- pmin(exp(Rv*(Yv-Uv))*((1+exp(

etav+Uv))/(1+exp(etav+Yv)))^nv,1)

Um[,ctr] <- ifelse(auxm[,ctr] < probs,

Yv, Uv)

if(ctr < nblk) Uv <- Um[,ctr]

}

Um

}

We test this function on a simple case, by finding the analytical (condi-
tional) expectation of ui and log(exp(η + ui)R/(1 + exp(η + ui))

n) and
then reproducing the values by MCMC simulation. Here we use the values
n = 5, R = 2, a = −1, b = 1, σ = .3,W = .65:

> integrate(function(x) x*exp((-.35+x)*2)*dnorm(x,sd=.3)/

(1+exp(-.35+x))^5, -15,15)$value/

integrate(function(x) exp((-.35+x)*2)*dnorm(x,sd=.3)/

(1+exp(-.35+x))^5, -15,15)$value

[1] -0.006108636 ### conditional expected u

> integrate(function(x) log(exp((-.35+x)*2)/(1+

exp(-.35+x))^5)*exp((-.35+x)*2)*dnorm(x,sd=.3)/

(1+exp(-.35+x))^5, -15,15)$value/

integrate(function(x) exp((-.35+x)*2)*dnorm(x,sd=.3)/

(1+exp(-.35+x))^5, -15,15)$value

[1] -3.41531 ## desired logLik expectation

## Now generate the U trajectory, starting with U=0.

> Useq <- c(MHblk(0,2,-.35,5,.3, nblk=100))

> c(mean(Useq), var(Useq))

[1] -0.01676858 0.07532460

> mean(log(exp((-.35+Useq)*2)/(1+exp(-.35+Useq))^5))

[1] -3.41071

> Useq <- c(Useq[51:100],MHblk(Useq[100],2,-.35,5,.3,

nblk=200)) ## uses last 50 of the previously
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### generated values, plus 250 new ones

> c(mean(Useq), var(Useq))

[1] -0.02240471 0.07836955

> mean(log(exp((-.35+Useq)*2)/(1+exp(-.35+Useq))^5))

[1] -3.412525

### Now 1000 more:

> Useq <- c(MHblk(Useq[250],2,-.35,5,.3,nblk=1000))

> c(mean(Useq), var(Useq))

[1] -0.01181766 0.08160613

> mean(log(exp((-.35+Useq)*2)/(1+exp(-.35+Useq))^5))

[1] -3.415085

### The answers are very stable.

These calculations were all very quick (1 second or less for each simulation-
block).

13.2 Example Continued: MCMC in EM

Finally ,we provide a summary and R log of the use of this MCMC step in
an EM iteration for maximizing logLik. We begin by simulating a random-
intercept logistic regression dataset of size 100 with vector nv of sample
sizes generated as Poisson(3) random variables plus 1, with vector W of
Unif [0,1] predictors, and parameters a = −1, b = 1, σ = .3.

> nv <- rpois(100,3) + 1

etav <- -1 + runif(100)

Rv <- rbinom(100, nv, plogis(etav+0.3*rnorm(100)))

> summary(Rv/nv)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.1500 0.3333 0.3709 0.5000 1.0000

We generate starting values for a, b by ordinary logistic regression (without
regard to the random intercept).

> glm(cbind(Rv, nv-Rv) ~ I(etav+1), family=binomial)$coef
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(Intercept) I(etav + 1)

-1.089849 1.083622 ### Use these with sig=.5

> etav1 <- -1.08985 + 1.08362*(1+etav)

Now, our inductive EM step involves generating a block of 100 imputed
U values for each data-item. Note that the imputed values fill up a 100×100
matrix.

> unix.time(Um <- MHblk(rep(0,100),Rv,etav1,nv,0.5, nblk=100))

### very quick !!

> summary(c(Um))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.850000 -0.341900 -0.007248 -0.008859 0.318800 1.716000

The next step is to average over the imputed columns to obtain the function
to maximize in a, b at the next M-step.

> .01*sum(Rv*(etav1+Um)-nv*log(1+exp(etav1+Um)))

[1] -245.0789 ### estimated log of conditional expected

### complete-data Likelihood.

### Next an M-step maximization over a,b:

> tmpmin <- nlm(function(thet) {

etapu <- thet[1]+thet[2]*(1+etav)+Um

.01*sum(nv*log(1+exp(etapu))-Rv*etapu)

}, c(-1.090, 1.084))

$minimum

[1] 245.0337

$estimate

[1] -1.155570 1.160729

$gradient

[1] -1.606080e-05 -2.791413e-06 ### OK, approx converged

### On this iteration we have improved (conditional-

### expected complete-data) logLik to -245.034

### For comparison, calculate logLik at true values:

> Um0 <- MHblk(Um[,100],Rv,etav,nv,0.3, nblk=100)

### estimated H0 cond’l expected logLik:
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> .01*sum(Rv*(etav+Um0)-nv*log(1+exp(etav+Um0)))

[1] -249.5472

> Um0 <- MHblk(Um0[,100],Rv,etav,nv,0.3, nblk=100)

> .01*sum(Rv*(etav+Um0)-nv*log(1+exp(etav+Um0)))

[1] -249.1056

### Recall: this is not the actual logLik

### but the estimate of the conditional expectation

### of the full-data logLik

### Now how would we update the estimate of sigma ?

### The simplest way would seem to be, use the formula

### for sig^2 = unconditional variance of u =

### expected conditional variance of u plus

### variance of conditional expectation of u :

> mean(apply(Um,1,var)) + var(apply(Um,1,mean))

[1] 0.2441128 ### Not bad: two pieces are .204, .040

### and

> sig.old <- sqrt(.244) ### = 0.4940

Next we try a proper 3-parameter M-step in our quasi-EM algorithm.
(’Quasi’ because we are doing MCMC in place of numerical quadratures to
obtain conditional expectations in the E-step.) In this step, we treat Um/sig as
the imputed standard-normal deviates. We do a series of quasi-EM iterations
in this way.

> th.old <- c(-1.089849, 1.083622, 0.5)

Uma <- Um

eta.old <- th.old[1] + th.old[2]*(etav+1)

Uma <- MHblk(Uma[,100],Rv,eta.old,nv,th.old[3],

nblk=100)/th.old[3]

tmpmin3 <- nlm(function(thet) {

etapu <- thet[1]+thet[2]*(1+etav)+thet[3]*Uma

.01*sum(nv*log(1+exp(etapu))-Rv*etapu)

}, th.old) ### converged, 9 iterations

$minimum

[1] 243.9371

$estimate
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[1] -1.1382352 1.1268970 0.4618309

### successive additional iterates of exactly the same type

-1.1433864 1.1292849 0.4418853

-1.1291498 1.1123130 0.4070816

-1.1319344 1.1338868 0.3786870

-1.1252628 1.1193708 0.3348035

-1.1333165 1.1340783 0.3227082

-1.1144844 1.1136013 0.3161008

-1.1143326 1.1020129 0.3052926

-1.1186356 1.1016660 0.3010774

-1.0945004 1.0725082 0.2747137

-1.1063528 1.0811459 0.2855079

-1.1148067 1.1088207 0.2687424

-1.0987998 1.0840951 0.2569771

-1.1065303 1.0925731 0.2513654

-1.1077716 1.1034591 0.2502139

-1.1044592 1.0967187 0.2226806

-1.1061799 1.0973809 0.2266805

-1.1033295 1.0832668 0.2158493

-1.1074619 1.0941746 0.2242768

At this point, the EM iterations seem to have essentially converged. We
conclude with a simple estimate of actual log-likelihood obtained by averaging
complete-data likelihoods over imputed conditional u-values.

## (Recall Um0 is imputed array at true values:)

> sum(log(apply(exp((etav+Um0)*Rv)*dnorm(Um0,sd=0.3)/

(1+exp(etav+Um0))^outer(nv,rep(1,100),"*"),1, mean)))

[1] -255.0079 ### actual logLik est at true params

> etab <- tmpmin3$est[1] + tmpmin3$est[2]*(etav+1)

Umb <- MHblk(Uma[,100],Rv, etab, nv,tmpmin3$est[3], nblk=100)

sum(log(apply(exp((etab+Umb)*Rv)*dnorm(Umb,sd=tmpmin3$est[3])/

(1+exp(etab+Umb))^outer(nv,rep(1,100),"*"),1, mean)))

[1] -227.4631 ### logLik est at converged param ests

It looks as though we should have cause for concern here: why is the (es-
timated) log-likelihood so different at the true and final estimated parameter
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values ? In fact, careful numerically integrated log-likelihoods (not shown
here) do show that the quasi-EM steps do work as they are supposed to,
increasing or at worst slightly decreasing the true logLik at each EM step: it
is the Monte-Carlo estimated log-likelihood values which are at fault here !
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