Persistence of regularity for solutions of the Boussinesq equations in Sobolev spaces

Igor Kukavica, Fei Wang, and Mohammed Ziane

Wednesday 20th December, 2017

Department of Mathematics, University of Southern California, Los Angeles, CA 90089
e-mails: kukavica@usc.edu, wang828@usc.edu, ziane@usc.edu

Abstract

We address the global regularity of solutions to the Boussinesq equations with zero diffusivity in two spatial dimensions. Previously, the persistence in the space $H^{1+s}(\mathbb{R}^2) \times H^s(\mathbb{R}^2)$ for all $s \geq 0$ has been obtained. In this paper we address the persistence in general Sobolev spaces, establishing it on a time interval which is almost independent of the size of the initial data. Namely, we prove that if $(u_0, \rho_0) \in W^{1+s,q}(\mathbb{R}^2) \times W^s,q(\mathbb{R}^2)$ for $s \in (0,1)$ and $q \in [2,\infty)$, then the solution $(u(t), \rho(t))$ of the Boussinesq system stays in $W^{1+s,q}(\mathbb{R}^2) \times W^s,q(\mathbb{R}^2)$ for $t \in [0,T^*]$, where T^* depends logarithmically on the size of initial data. If we furthermore assume that $s q > 2$, then we get the global persistence in the space $W^{1+s,q}(\mathbb{R}^2) \times W^s,q(\mathbb{R}^2)$ for the initial data with compact support, as well as for data in $W^{1+s,q}(\mathbb{T}^2) \times W^s,q(\mathbb{T}^2)$, without any restriction on $s \in (0,1)$ and $q \in [2,\infty)$.

Mathematics Subject Classification: 35K55, 35M33, 76B03, 76D05
Keywords: Boussinesq equations, commutator estimate, Kato-Ponce type inequalities, global well-posedness

1 Introduction

In this paper, we address the persistence of regularity for the 2D Boussinesq equations with zero diffusivity

$$\frac{\partial u}{\partial t} + u \cdot \nabla u - \Delta u + \nabla p = \rho e_2$$

$$\text{div } u = 0$$

$$\frac{\partial \rho}{\partial t} + u \cdot \nabla \rho = 0$$

in general Sobolev spaces. Here, u is the velocity solving the 2D Navier-Stokes equation ([CF, DG, FMT, R, T2, T3]) driven by ρ, which represents the density or temperature of the fluid, depending on the physical context, and $e_2 = (0,1)^T$. This system arises in several different physical scenarios. One situation is the limiting case of small diffusion Rayleigh-Bénard problem, where ρ represents the temperature. Also, the Boussinesq system serves as a simplified model for the 3D Navier-Stokes equations since it incorporates a vortex stretching effect.
Due to the smoothing effect, the Boussinesq system with viscosity and non-zero diffusion

\[\frac{\partial p}{\partial t} + u \cdot \nabla \rho = \kappa \Delta \rho \]

replacing (1.3) is easier to treat than the same system without the diffusion. The global well-posedness of the system (1.1)–(1.3) with (1.3) replaced by (1.4), where \(\kappa > 0 \), was obtained in [CD]. In 2006, Chae [C] proved the global existence and uniqueness of solutions to the system (1.1)–(1.3), proving that if \((u_0, \rho_0) \in H^m(\mathbb{R}^2) \times H^m(\mathbb{R}^2) \), then the solution \((u, \rho)\) stays in \(H^m(\mathbb{R}^2) \times H^m(\mathbb{R}^2) \) for all \(t > 0 \), where \(m \) is an integer greater than or equal to 3. The main idea in the proof was to show that \(\int_0^T \| \nabla \rho \|_{L^\infty} \, dt < \infty \). At the same time, Hou and Li [HL] proved the persistence of regularity for the solutions in \(H^m(\mathbb{R}^2) \times H^{m-1}(\mathbb{R}^2) \) also for integer \(m \) greater than or equal to 3, with the key ingredient in their proof being an upper bound for \(\| \nabla u \|_{L^\infty} \). The persistence results in the class \(H^s(\mathbb{R}^2) \times H^{s-1}(\mathbb{R}^2) \) for a larger range of \(s \) were obtained more recently. For \(s = 1 \), one may refer to [DP, LLT], in which the global existence and uniqueness results were proven for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction. Recently, the case \(s \in (1,3) \) was resolved in [HKZ1, HKZ2]. The key step in the first paper was an estimate for \(\nabla B(u,v) \) while a borderline commutator estimate for \(\|[\Lambda^s \partial_j, v] \rho \|_{L^2(\mathbb{R}^2)} \) was obtained in the second paper. For further results on the well-posedness and persistence, we refer the reader to [ACW, BS, BrS, CG, CLR, CN, CW, ES, HK1, HK2, HKR, KTW, LPZ, T1, W]. Note that the global existence for another extreme case when (1.1) is replaced by

\[\frac{\partial u}{\partial t} + u \cdot \nabla u + \nabla p = \rho e_2 \]

is still an open problem.

In this paper, we consider the persistence of the system (1.1)–(1.3) in the Sobolev space \(W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2) \) where \(s \in (0,1) \) and \(q \in [2, \infty) \). In comparison with the \(L^2 \) based result, we are faced with the following difficulties. First, the velocity does not need to belong to \(L^2(\mathbb{R}^2) \) and thus we cannot use the energy inequality. In order to avoid this problem, we couple the \(L^p \) estimate for the velocity and that of the vorticity. Second, the available commutator estimates and the Kato-Ponce inequality are inadequate for our purpose. What we need here is the estimate for \(\|[\Lambda^s \partial_j, g] f \|_{L^2(\mathbb{R}^2)} \). As in [KP], we write this commutator as a Coifman-Meyer operator in the frequency regions \(\xi \gg \eta \) and \(\xi \ll \eta \) and use the complex interpolation in the remaining region. Also, the Brezis-Gallouet and related Beale-Kato-Majda inequalities ([BKM]) do not apply in our situation. Instead we prove

\[\| A u \|_{L^\infty} \leq C \left(1 + \log(1 + \| \Lambda^s \omega \|_{L^r}) \right)^{1+1/s} (1 + \| \omega \|_{L^q} + \| \nabla (|\omega|^{q/2}) \|_{L^2}^{q/2}) \]

(cf. Lemma 4.1 below). Since the power of the logarithm is too high, we may only obtain a local persistence result, with the existence time depending on the initial data logarithmically. As we may see, a huge difficulty to get a global result is the estimate of \(\| \omega \|_{L^\infty} \). If we furthermore assume that \(sq > 2 \), then we may prove

\[\| \omega(t) \|_{L^\infty} \leq C \sqrt{1 + t} \]

(cf. Lemma 6.2), allowing us to prove the global existence in \(W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2) \).

In Theorem 6.3 below we also obtain the global persistence in the intersection space \((W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)) \cap (H^{1+s}(\mathbb{R}^2) \times H^s(\mathbb{R}^2)) \) where \(s \in (0,1) \) and \(q \in [2, \infty) \). As a corollary of this result, we obtain
the global persistence in the space $W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)$ for the initial data with compact support. The global existence in $W^{1+s,q}(\mathbb{T}^2) \times W^{s,q}(\mathbb{T}^2)$ is also established in Theorem 7.1 below.

2 On almost persistence

In this section we prove that if the initial data (u_0, ρ_0) belongs to $W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)$ where $s \in (0,1)$ and $q \in (2,\infty)$, then $(u(t), \rho(t)) \in W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)$ for $t \in [0,T^*)$, where T^* depends logarithmically on the size of the initial data. Further below we prove the global persistence in the intersection space $(W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)) \cap (H^{1+s}(\mathbb{R}^2) \times H^s(\mathbb{R}^2))$.

Before stating the first main theorem, we assert the global persistence in $W^{1,q}(\mathbb{R}^2) \times L^q(\mathbb{R}^2)$.

Proposition 2.1. Assume that, for some $q \geq 2$, we have $(u_0, \rho_0) \in W^{1,q}(\mathbb{R}^2) \times L^q(\mathbb{R}^2)$ with $\text{div} \, u_0 = 0$. Then there exists a unique solution (u, ρ) to the equations (1.1)–(1.3) such that $u \in C([0,\infty), W^{1,q}(\mathbb{R}^2))$ and $\rho \in C([0,\infty), L^q(\mathbb{R}^2))$. Moreover, with $\omega = \nabla \times u$, there exists C depending on $\|u_0\|_{W^{1,q}}$ and $\|\rho_0\|_{L^q}$ such that

$$\|\nabla u(t)\|_{L^q} \leq C\sqrt{t} + 1, \quad t \in [0, \infty)$$

(2.1)

and

$$\int_0^t \|\nabla (|\omega|^{q/2})\|_{L^2}^2 \, ds \leq C(1 + t)^{q/2}$$

(2.2)

with

$$\|\rho(t)\|_{L^q} = \|\rho_0\|_{L^q}, \quad t \in [0, \infty)$$

(2.3)

hold.

The following is our first main statement.

Theorem 2.2. Let $s \in (0,1)$ and $q \in (2,\infty)$. Assume that $\|u_0\|_{W^{1+s,q}} \leq M_0$ with $\text{div} \, u_0 = 0$ and $\|\rho_0\|_{W^{s,q}} \leq M_1$, where $M_0, M_1 \geq 1$ are constants. Then there exists a constant C depending on $\|u_0\|_{W^{1,q}}$ and $\|\rho_0\|_{L^q}$ such that for

$$T^* = \min \left\{ \left(1 + \frac{1}{C(1 + \log^{1/q}(1 + M_0 + M_1))} \right)^{2/3} - 1, \frac{1}{C(1 + \log^{1/q(1 + M_0 + M_1))^{2q/(q-2)}} \right\}$$

(2.4)

there exists a unique solution (u, ρ) to the equations (1.1)–(1.3) such that $u \in C([0,T^*), W^{1+s,q}(\mathbb{R}^2))$ and $\rho \in C([0,T^*), W^{s,q}(\mathbb{R}^2))$.

It is clear from the proof below that we can take C to be proportional to $\|u_0\|_{W^{1,q}} + \|\rho_0\|_{L^q}$.

Proof of Proposition 2.1. Since the case $q = 2$ is covered in [LLT], we assume $q > 2$. We start by multiplying the equation (1.1) with $|u|^{q-2}u$ and integrating it with respect to x obtaining

$$\frac{1}{q} \frac{d}{dt} \|u\|_{L^q}^q + \int (u \cdot \nabla u) \cdot u |u|^{q-2} \, dx - \int \Delta u \cdot u |u|^{q-2} \, dx + \int \nabla p \cdot u |u|^{q-2} \, dx$$

$$= \int \rho e_2 \cdot u |u|^{q-2} \, dx.$$

(2.5)
Due to the divergence-free condition for \(u \), we have \(\int (u \cdot \nabla u) \cdot u |u|^{q-2} \, dx = 0 \) while integrating by parts, we obtain
\[
- \int \Delta u \cdot u |u|^{q-2} \, dx = \int \partial_j u_k \partial_j u_k |u|^{q-2} \, dx + (q-2) \int (u_k \partial_j u_k)(u_l \partial_j u_l) |u|^{q-4} \, dx,
\]
(2.6)

where the summation convention on repeated indices is used throughout. Denoting the right side of the above equality by \(D_0 \), we get from (2.5)
\[
\frac{1}{q} \frac{d}{dt} \|u\|_{L^q}^q + D_0 = - \int \nabla p \cdot u |u|^{q-2} \, dx + \int \rho e_2 \cdot u |u|^{q-2} \, dx
\leq \|\nabla p\|_{L^q} \|u\|_{L^q}^{q-1} + \|\rho\|_{L^q} \|u\|_{L^q}^{q-1}.
\]
(2.7)

Noting that \(D_0 \geq 0 \), we only need to estimate the pressure term. We take the divergence of the equation (1.1) and obtain
\[
- \Delta p = \text{div} \, (u \cdot \nabla u) - \partial_2 \rho.
\]
(2.8)

Writing
\[
\nabla p = \nabla (-\Delta)^{-1} \{ \text{div} \, (u \cdot \nabla u) - \partial_2 \rho \},
\]
(2.9)

we may apply the Calderón-Zygmund theorem in order to get
\[
\|\nabla p\|_{L^q} \leq C(\|u \cdot \nabla u\|_{L^q} + \|\rho\|_{L^q}) \leq C(\|u\|_{L^\infty} \|\nabla u\|_{L^q} + \|\rho\|_{L^q})
\leq C(\|u\|_{W^{1,\infty}} \|\nabla u\|_{L^q} + \|\rho\|_{L^q}) \leq C(\|u\|_{L^q} + \|\nabla u\|_{L^q}) \|\nabla u\|_{L^q} + C\|\rho\|_{L^q}
\leq C(\|u\|_{L^q} + \|\omega\|_{L^q}) \|\omega\|_{L^q} + C\|\rho\|_{L^q},
\]
(2.10)

where \(\omega = \nabla \times u \) is the vorticity and where the constant depends on \(q \) (considered fixed). In order to get the bound for \(\|\rho\|_{L^q} \), we multiply the equation (1.3) by \(|\rho|^{q-2} \rho \) and integrate with respect to \(x \) to get
\[
\frac{1}{q} \frac{d}{dt} \|\rho\|_{L^q}^q = 0,
\]
(2.11)

where we used
\[
\int u \cdot \nabla \rho |\rho|^{q-2} \rho \, dx = 0.
\]
(2.12)

Therefore, the \(L^q \) norm of \(\rho \) is preserved by this system, i.e.,
\[
\|\rho(t)\|_{L^q} = \|\rho_0\|_{L^q}, \quad t > 0.
\]
(2.13)

Combining (2.7) with (2.10) and (2.13) leads to
\[
\frac{1}{q} \frac{d}{dt} \|u\|_{L^q}^q + D_0 \leq C(\|u\|_{L^q} + \|\omega\|_{L^q}^2 + 1) \|u\|_{L^q}^{q-1}.
\]
(2.14)

Taking the curl of the equation (1.1), we get
\[
\omega_1 + u \cdot \nabla \omega - \Delta \omega = \nabla \times (\rho e_2) = \partial_1 \rho.
\]
(2.15)

We multiply both sides of the equation (2.15) by \(|\omega|^{q-2} \omega \) and integrate it to get an \(L^q \) estimate of \(\omega \),
\[
\int \omega_1 |\omega|^{q-2} \omega \, dx + \int u \cdot \nabla \omega |\omega|^{q-2} \omega \, dx - \int \Delta \omega |\omega|^{q-2} \omega \, dx = \int \partial_1 \rho |\omega|^{q-2} \omega \, dx.
\]
(2.16)
Due to the divergence-free condition, we have $\int u \cdot \nabla |\omega|^{q-2} \omega \, dx = 0$. Integrating by parts the third term on the left side of (2.16), we arrive at

$$\frac{1}{q} \frac{d}{dt} \|\omega\|_{L^q}^q + (q - 1) \left(\frac{2}{q} \right)^2 \|\nabla(|\omega|^{q/2})\|_{L^2}^2 = -(q - 1) \int \rho |\omega|^{q-2} \partial_t \omega \, dx. \tag{2.17}$$

By Hölder’s inequality and using

$$\|\omega\|^{(q-2)/2} \partial_t \omega \|_{L^2} = \frac{2}{q} \|\partial_t (|\omega|^{q/2})\|_{L^2}, \tag{2.18}$$

we have

$$\left| \int \rho |\omega|^{q-2} \partial_t \omega \, dx \right| \leq \frac{C}{q} \|\rho\|_{L^s} \|\nabla(|\omega|^{q/2})\|_{L^2} \|\omega\|_{L^2}^{(q-2)/2}. \tag{2.19}$$

We apply the inequality (2.19) to the equation (2.17) and use Young’s inequality to get

$$\frac{1}{q} \frac{d}{dt} \|\omega\|_{L^q}^q + (q - 1) \left(\frac{2}{q} \right)^2 \|\nabla(|\omega|^{q/2})\|_{L^2}^2 \leq \frac{1}{2}(q - 1) \left(\frac{2}{q} \right)^2 \|\nabla(|\omega|^{q/2})\|_{L^2}^2 + C \|\rho\|_{L^2}^2 \|\omega\|_{L^q}^{q-2}, \tag{2.20}$$

where, recall, the constant C depends on q. Absorbing the first term on the right side of the above inequality, we get

$$\frac{d}{dt} \|\omega\|_{L^q}^q + \frac{1}{C} \|\nabla(|\omega|^{q/2})\|_{L^2}^2 \leq C \|\rho\|_{L^2}^2 \|\omega\|_{L^q}^{q-2}. \tag{2.21}$$

The inequality (2.21), combined with (2.13), implies

$$\|\omega(t)\|_{L^q} \leq C \sqrt{1 + t}, \quad t \in [0, \infty), \tag{2.22}$$

as well as

$$\int_0^t \|\nabla(|\omega|^{q/2})\|_{L^2}^2 \, ds \leq C(1 + t)^{q/2}, \tag{2.23}$$

where C depends on the initial data $\|u_0\|_{W^{1,q}}$ and $\|\rho_0\|_{L^q}$. Using (2.22) in (2.14) and applying the Gronwall’s inequality then concludes the proof.

\[\square\]

3 A commutator lemma

The main step in the proof of Theorem 2.2 is a commutator estimate, which is stated next. Let $\Lambda = (-\Delta)^{1/2}$.

Lemma 3.1. Let $s \in (0, 1)$ and $f, g \in \mathcal{S}(\mathbb{R}^2)$. For $1 < q < \infty$ and $j \in \{1, 2\}$,

$$\| [\Lambda^s \partial_j, g] f \|_{L^q(\mathbb{R}^2)} \leq C \|f\|_{L^{r_1}} \|\Lambda^{1+s} g\|_{L^{r_1}} + C \|\Lambda^s f\|_{L^{r_2}} \|g\|_{L^{r_2}} \tag{3.1}$$

holds, where $r_1, r_1, r_2 \in [q, \infty]$ and $r_2 \in [q, \infty)$ satisfy $1/q = 1/r_1 + 1/r_1 = 1/r_2 + 1/r_2$, and where C is a constant depending on r_1, r_1, r_2, s, and q.

\[\square\]
Recall that
\[[\Lambda^s \partial_j, g]f = \Lambda^s \partial_j (gf) - g\Lambda^s \partial_j f. \] (3.2)

This lemma can be seen as an extension of the Kato-Ponce inequality since we allow \(\tilde r_1 = \infty \). The proof uses the ideas from [KP].

Proof. Taking the Fourier transform of \([\Lambda^s \partial_j, g]f\), we get
\[
([\Lambda^s \partial_j, g]f)(\xi) = i \int_{\mathbb{R}^2} (|\xi|^s \xi_j - |\xi - \eta|^s (\xi - \eta)_j) \hat{f}(\xi - \eta) \hat{g}(\eta) \, d\eta.
\] (3.3)

Therefore,
\[
[\Lambda^s \partial_j, g]f = c_0 \int \int e^{ix \cdot \xi} (|\xi|^s \xi_j - |\xi - \eta|^s (\xi - \eta)_j) \hat{f}(\xi - \eta) \hat{g}(\eta) \, d\eta \, d\xi
\] (3.4)

where \(c_0 = i/4\pi^2 \), and where \(\Phi_k : \mathbb{R} \to [0, 1] \) are \(C^\infty \) cut-off functions such that
\[
\sum_{k=1}^{3} \Phi_k = 1 \text{ on } [0, \infty)
\] (3.5)

with
\[
\text{supp } \Phi_1 \subseteq [-1/2, 1/2], \quad \text{supp } \Phi_2 \subseteq [1/4, 3], \quad \text{supp } \Phi_3 \subseteq [2, \infty).
\] (3.6)

Denote
\[
A_k(\xi, \eta) = (|\xi + \eta|^s(\xi + \eta)_j - |\xi|^s \xi_j) \hat{f}(\xi) \hat{g}(\eta) \Phi_k(|\xi|/|\eta|), \quad k = 1, 2, 3.
\] (3.7)

The commutator (3.2) may be rewritten as
\[
[\Lambda^s \partial_j, g]f = c_0 \sum_{k=1}^{3} \int \int e^{ix \cdot (\xi + \eta)} A_k(\xi, \eta) \, d\eta \, d\xi.
\] (3.8)

First, we write \(A_1 \) as
\[
A_1(\xi, \eta) = \frac{|\xi + \eta|^s(\xi + \eta)_j - |\xi|^s \xi_j}{|\eta|^{1+s}} \Phi_1 \left(\frac{|\xi|}{|\eta|} \right) \hat{f}(\xi)(\Lambda^{1+s}g)^*(-\eta)
\]
\[
= \sigma_1(\xi, \eta) \hat{f}(\xi)(\Lambda^{1+s}g)^*(-\eta).
\] (3.9)

It is easy to check that
\[
|\sigma_1| \leq C, \quad (3.10)
\]

where \(C \) is a constant and where we used \(2|\xi| \leq |\eta| \) on \(\text{supp } \Phi_1 \). Taking the first derivative with respect to \(\xi_l \), where \(l = 1, 2 \), we obtain
\[
\left| \frac{\partial \sigma_1}{\partial \xi_l} \right| \leq C \frac{C}{|\eta|} \leq \frac{C}{|\xi| + |\eta|} \quad (3.11)
\]
while differentiating with respect to η_l for $l = 1, 2$ leads to
\[
\left| \frac{\partial \sigma_1}{\partial \eta} \right| \leq C \frac{C}{|\xi| + |\eta|}.
\]
Continuing by induction, we get
\[
|\frac{\partial^2 \sigma_1}{\partial \eta^2} | \leq C(|\alpha|, |\beta|)(|\xi| + |\eta|)^{-|(|\alpha| + |\beta|)}, \quad \alpha, \beta \in \mathbb{N}_0^2.
\]

By the Coifman-Meyer theorem, we get
\[
\left\| \int \int e^{ix \cdot (\xi + \eta)} A_1(\xi, \eta) \, d\eta \, d\xi \right\|_{L^q} \leq C\|f\|_{L^{r_1}} \|\Lambda^{1+q}g\|_{L^{r_1}}
\]
where $1/q = 1/r_1 + 1/r_2$. Postponing the treatment of A_2, we deal with A_3 next. We rewrite this symbol as
\[
A_3(\xi, \eta) = |\xi + \eta|^{-s} \Phi_3 \left(\frac{|\xi|}{|\eta|} \right) \hat{f}(\xi) \hat{g}(\eta) + (|\xi| - |\eta|) \xi_j \Phi_3 \left(\frac{|\xi|}{|\eta|} \right) \hat{f}(\xi) \hat{g}(\eta)
\]
\[
= i \frac{|\xi + \eta|^s}{|\xi|^s} \frac{d}{d\eta} (\Phi_3 \left(\frac{|\xi|}{|\eta|} \right)) \Lambda^s f \nabla g (\eta) + (|\xi| - |\eta|) \xi_j \Phi_3 \left(\frac{|\xi|}{|\eta|} \right) \Lambda^s f \nabla g (\eta)
\]
\[
= \sigma_{31}(\xi, \eta) \Lambda^s f \nabla g (\eta) + \sigma_{32}(\xi, \eta) \Lambda^s f \nabla g (\eta).
\]
Note that in the region $\Phi_3 > 0$, we have $|\xi| > 2|\eta|$. For σ_{31} it is easy to check that
\[
|\frac{\partial^2 \sigma_3}{\partial \eta^2} | \leq C(|\xi| + |\eta|)^{-|(|\alpha| + |\beta|)}, \quad \alpha, \beta \in (\mathbb{Z}^+)^2.
\]
In order to estimate the second term on the far right side of (3.15), we write
\[
\xi_j (|\xi + \eta|^s - |\xi|^s) = \xi_j \int_0^1 \frac{d}{dr} (|\xi + r\eta|^s) \, dr = \xi_j \int_0^1 s|\xi + r\eta|^s - 2(\xi + r\eta) \cdot \eta \, dr,
\]
which implies that the second term may be rewritten as
\[
\sigma_{32}(\xi, \eta) \Lambda^s f \nabla g (\eta) = \int \frac{d}{d\eta} (\Phi_3 \left(\frac{|\xi|}{|\eta|} \right)) \Lambda^s f \nabla g (\eta) \int_0^1 \frac{s|\xi + r\eta|^s - 2(\xi + r\eta) \cdot \eta}{|\xi|^s} \, dr.
\]
A direct computation shows that
\[
|\frac{\partial^2 \sigma_3}{\partial \eta^2} | \leq C(|\xi| + |\eta|)^{-|(|\alpha| + |\beta|)}, \quad \alpha, \beta \in \mathbb{N}_0^2.
\]
Therefore, we obtain that
\[
\left\| \int \int e^{ix \cdot (\xi + \eta)} A_3 \, d\eta \, d\xi \right\|_{L^q} \leq C\|\Lambda^s f\|_{L^{r_2}} \|\nabla g\|_{L^{r_2}},
\]
where \(1/q = 1/r_2 + 1/\tilde{r}_2\). Finally we treat the second term of the sum on the right side of (3.8), in which case \(|\xi|\) and \(|\eta|\) are comparable. Note that

\[
A_2(\xi, \eta) = |\xi + \eta|^s(\xi + \eta)jF_2 \left(\frac{|\xi|}{|\eta|} \right) \hat{f}(\xi)\hat{g}(\eta) - |\xi|^s\xi_jF_2 \left(\frac{|\xi|}{|\eta|} \right) \hat{f}(\xi)\hat{g}(\eta) = A_{21} - A_{22}. \tag{3.21}
\]

First we deal with the simpler term \(A_{22}\), which may be written as

\[
A_{22}(\xi, \eta) = \frac{|\xi|^s\xi_j}{|\xi|^s|\eta|} F_2 \left(\frac{|\xi|}{|\eta|} \right) \left(\Lambda^s f \right)^{\ast}(\xi)(\Lambda g)^{\ast}(\eta). \tag{3.22}
\]

Applying the Coifman-Meyer theorem we get

\[
\left\| \int \int e^{ix\cdot(\xi + \eta)} A_{22}(\xi, \eta) \, d\eta \, d\xi \right\|_{L_q} \leq C \|\Lambda^s f\|_{L^{r_2}} \|\Lambda g\|_{L^{\tilde{r}_2}}. \tag{3.23}
\]

In order to conclude the lemma we only need to get a similar estimate for \(A_{21}\), to which the above method does not apply. The main reason is that when we take the derivative, the factor of \(|\xi + \eta|^s\) appears in the denominator. Thus, as in [KP], we use the complex interpolation to avoid this difficulty. First, we have

\[
\left\| \int \int e^{ix\cdot(\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \, d\xi \right\|_{L_q} \leq C(b) \|\Lambda^s f\|_{L^{r_2}} \|\Lambda g\|_{L^{\tilde{r}_2}}, \tag{3.24}
\]

where \(s = a + ib\), with \(a\) a sufficiently large positive number and \(b \in \mathbb{R}\), and where \(C(b)\) is a polynomial. Next we consider the case \(s = ib\) with \(b \in \mathbb{R}\). In order to get an estimate for \(\left\| \int \int e^{ix\cdot(\xi + \eta)} A_{21} \, d\eta \, d\xi \right\|_{L_q}\), we rewrite

\[
\int \int e^{ix\cdot(\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \, d\xi = \int \int e^{ix\cdot(\xi + \eta)} |\xi + \eta|^s(\xi + \eta)j \hat{f}(\xi)\hat{g}(\eta) \Phi_2 \, d\eta \, d\xi
\]

\[
= \int \int e^{ix\cdot(\xi + \eta)} |\xi + \eta|^s \left(\frac{\xi + \eta}{|\eta|} \right) \hat{f}(\xi)(\Lambda g)^{\ast}(\eta) \Phi_2 \, d\eta \, d\xi
\]

\[
= \int \int e^{ix\cdot|\xi|^s} \left(\frac{\xi}{|\eta|} \right) \hat{f}(\xi - \eta)(\Lambda g)^{\ast}(\eta) \Phi_2 \, d\eta \, d\xi. \tag{3.25}
\]

Using the Hörmander-Mikhlin multiplier theorem for the symbol \(|\xi|^s = |\xi|^ib\), we have

\[
\left\| \int \int e^{ix\cdot(\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \, d\xi \right\|_{L_q} \leq C(b) \left\| \int e^{ix\cdot\xi} \int \frac{\xi_j}{|\eta|} \hat{f}(\xi - \eta)(\Lambda g)^{\ast}(\eta) \Phi_2 \, d\eta \, d\xi \right\|_{L_q}
\]

\[
= C(b) \left\| \int \int e^{ix\cdot(\xi + \eta)} \left(\frac{\xi + \eta}{|\eta|} \right) \Phi_2 \hat{f}(\xi)(\Lambda g)^{\ast}(\eta) \, d\eta \, d\xi \right\|_{L_q}. \tag{3.26}
\]

Since

\[
\left| \partial_\xi^\alpha \partial_\eta^\beta \left(\frac{\xi + \eta}{|\eta|} \right) \Phi_2 \left(\frac{|\xi|}{|\eta|} \right) \right| \leq C(|\xi| + |\eta|)^{-|\alpha|+|\beta|}, \quad \alpha, \beta \in \mathbb{N}^2_0, \tag{3.27}
\]

using the Coifman-Meyer theorem, we have

\[
\left\| \int \int e^{ix\cdot(\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \, d\xi \right\|_{L_q} \leq C(b) \|f\|_{L^{r_2}} \|\Lambda g\|_{L^{\tilde{r}_2}}. \tag{3.28}
\]
Thus, using the complex interpolation inequality, we get
\[\left\| \int e^{i\xi \cdot (\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \right\|_{L^p} \leq C(b) \| \Lambda^s f \|_{L^r} \| \Lambda g \|_{L^{r/2}} \] (3.29)
for any \(s \) such that \(\Re(s) \in (0, 1) \). Taking \(s \in (0, 1) \), since \(\Im(s) = 0 \), we have
\[\left\| \int e^{i\xi \cdot (\xi + \eta)} A_{21}(\xi, \eta) \, d\eta \right\|_{L^{r/2}} \leq C \| \Lambda^s f \|_{L^r} \| \Lambda g \|_{L^{r/2}} \] (3.30)
and the proof is completed. \(\square \)

4 An \(L^\infty \) bound

The following statement provides \(L^\infty \) bounds on the velocity and the vorticity in terms of \(L^q \) norms of the derivatives of the vorticity.

Lemma 4.1. Assume that \(u \in S(\mathbb{R}^2)^2 \) is a vector field satisfying \(\text{div} \, u = 0 \). Let \(0 < s < \infty \) and \(1 \leq r \leq \infty \) be such that \(rs > 2 \). For \(2 \leq q < \infty \), with \(\omega = \nabla \times u \), the inequalities
\[\| \Lambda u \|_{L^\infty} \leq C \left(1 + \log \left(1 + \| \Lambda^s \omega \|_{L^r} \right) \right) \left(1 + \| \omega \|_{L^r} + \| \nabla (|\omega|^{q/2}) \|_{L^2}^{2/q} \right) \] (4.1)
and
\[\| \omega \|_{L^\infty} \leq C \left(1 + \log \left(1 + \| \Lambda^s \omega \|_{L^r} \right) \right) \left(1 + \| \omega \|_{L^r} + \| \nabla (|\omega|^{q/2}) \|_{L^2}^{2/q} \right) \] (4.2)
hold, where \(C = C(r, s, q) \).

Proof. First we prove that
\[\| f \|_{L^\infty} \leq C (\| f \|_{L^b} + \| \Lambda^s f \|_{L^r}) , \quad b \geq 1 \quad \text{if} \quad f \in S(\mathbb{R}^2) \] (4.3)
where the constant \(C \) depends only on \(r \) and \(s \), i.e., it is independent of \(b \). Without loss of generality, we may assume \(\| f \|_{L^b} + \| \Lambda^s f \|_{L^r} = 1 \). Using the standard Littlewood-Paley notation, we have
\[\| f \|_{L^\infty} \leq \| S_0 f \|_{L^\infty} + \sum_{j=0}^{\infty} \| \Delta_j f \|_{L^\infty} \] (4.4)
By Bernstein’s inequality, we bound the first term on the right side as
\[\| S_0 f \|_{L^\infty} \leq C \| S_0 f \|_{L^b} \leq C . \] (4.5)
In order to estimate the second term on the right side of (4.4), we write
\[\| \Delta_j f \|_{L^\infty} \leq C 2^{2j/r} \| \Delta_j f \|_{L^r} \leq C 2^{2j/r - j} \| \Lambda^s \Delta_j f \|_{L^r} \leq C 2^{j(2 - s)/2} , \] (4.6)
where we used Bernstein’s inequality in the first step. Since \(rs > 2 \), we may sum up the terms and obtain \(\| f \|_{L^\infty} \leq C \), thus leading to (4.3). By rescaling (4.3), we obtain the Gagliardo-Nirenberg inequality
\[\| f \|_{L^\infty} \leq C \| f \|_{L^b}^{1 - a} \| \Lambda^s f \|_{L^r}^a \] (4.7)
where
\[a = \frac{2}{2 + b(s - 2/r)}. \] (4.8)

Applying the above inequality to \(Au \) with \(b \geq q \) to be determined, we get
\[\|Au\|_{L^\infty} \leq C\|Au\|_{L^p} - a\|A^{1+\delta}u\|_{L^r} \leq Cb\|\omega\|_{L^q} - a\|A^\omega\|_{L^r} \leq Cb(1 + \|\omega\|_{L^r})\|A^\omega\|_{L^r}^q, \] (4.9)
where the parameters \(r, s, q \) are fixed, while we need to track the dependence of the constants on \(b \).

Also, we have
\[\|u\|_{L^r} = \|\omega\|_{L^q}^{2/q} \leq C\left(\frac{b}{q} \right)^{2/q} \|\omega\|_{L^q}^{2/q} \|(\omega\|_{L^2}^q)_{1-q/b} \right)^{2/q} \leq C\left(\frac{b}{q} \right)^{2/q} \|\nabla(\omega|q/2)\|_{L^2}^{2/q} \leq Cb\|\omega\|_{L^r} + \|\nabla(\omega|q/2)\|_{L^2}^{2/q}. \] (4.10)

Using (4.10) in (4.9), we get
\[\|Au\|_{L^\infty} \leq Cb^{1+1/q}(1 + \|\omega\|_{L^r} + \|\nabla(\omega|q/2)\|_{L^2}^{2/q})\|A^\omega\|_{L^r}^q. \] (4.11)

Therefore, by setting \(b = q + \log(1 + \|A^\omega\|_{L^r}) \), we obtain
\[\|Au\|_{L^\infty} \leq C \left(1 + \log(1 + \|A^\omega\|_{L^r}) \right)^{1+1/q}(1 + \|\omega\|_{L^r} + \|\nabla(\omega|q/2)\|_{L^2}^{2/q}). \] (4.12)
Indeed, note that \(\|A^\omega\|_{L^r}^q = \exp(a \log\|A^\omega\|_{L^r}) \), which is bounded by a constant by our choice of \(b \) and (4.8). Thus (4.1) is established. Similarly to (4.9), we get
\[\|\omega\|_{L^\infty} \leq C\|\omega\|_{L^p} - a\|A^\omega\|_{L^r}. \] (4.13)

Repeating the above procedure, we get
\[\|\omega\|_{L^\infty} \leq C \left(1 + \log(1 + \|A^\omega\|_{L^r}) \right)^{1/q}(1 + \|\omega\|_{L^r} + \|\nabla(\omega|q/2)\|_{L^2}^{2/q}), \] (4.14)
which gives (4.2).

\section{The proof of Theorem 2.2}

We are now ready to prove Theorem 2.2. Since the persistence in \(W^{1,q}(\mathbb{R}^2) \times L^q(\mathbb{R}^2) \) has been addressed in Proposition 2.1, we focus on the estimate of the highest derivatives of \(u \rho \), namely on \(\|A^\omega\|_{L^r} \) and \(\|A^\rho\|_{L^r} \). Since the cancellation property is not available, we obtain an extra term involving \(\|Au\|_{L^\infty} \). Using results in Section 4, we may bound it by \(\log^{1+1/q}(1 + \|A^\omega\|_{L^r})(1 + \|\omega\|_{L^r} + \|\nabla(\omega|q/2)\|_{L^2}^{2/q}) \), leading to logarithmic dependence on the norms. Note that since \(1 + 1/q > 1 \), we do not obtain the global existence (note, however, the global results in Sections 6 and 7).

\textbf{Proof of Theorem 2.2}. Applying the operator \(A^\omega \) to the equation (2.15), multiplying it with \(|A^\omega|^{q-2}A^\omega \), and integrating in \(x \), we get
\[\frac{1}{q} \frac{d}{dt} \|A^\omega\|_{L^q}^q - \int A^\omega |\Delta \omega| |A^\omega|^{q-2}A^\omega \ dx + \int A^\omega (u \cdot \nabla \omega) |A^\omega|^{q-2}A^\omega \ dx
\]
\[= \int A^\omega \partial_t |\Delta \omega|^{q-2}A^\omega \ dx. \] (5.1)
Next, we integrate by parts in the second term on the left side of the above equation and move the third
term to the right side in order to get

\[
\frac{1}{q} \frac{d}{dt} \| \Lambda^s \omega \|_{L^q}^q + (q - 1) \left(\frac{2}{q} \right)^2 \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2 \\
= \int \Lambda^s \partial_t \rho |\Lambda^s \omega|^{q-2} \Lambda^s \omega \, dx - \int \Lambda^s (u \cdot \nabla \omega) |\Lambda^s \omega|^{q-2} \Lambda^s \omega \, dx \\
= I_1 + I_2, \tag{5.2}
\]

where we also used

\[
\int |\Lambda^s \nabla \omega|^{2} |\Lambda^s \omega|^{q-2} \, dx = \left(\frac{2}{q} \right)^2 \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2. \tag{5.3}
\]

For the term I_1, we integrate by parts and use Hölder’s inequality to obtain

\[
I_1 = - (q - 1) \int \Lambda^s (\rho \psi_2) |\Lambda^s \omega|^{q-2} \Lambda^s \partial_t \omega \, dx \leq C \| \Lambda^s \rho \|_{L^q} \| \Lambda^s \nabla \omega |\Lambda^s \omega|^{(q-2)/2} \|_{L^2} \| |\Lambda^s \omega|^{(q-2)/2} \|_{L^{2q/(q-2)}} \\
= C \| \Lambda^s \rho \|_{L^q} \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2} \| \Lambda^s \omega \|_{L^{2q/(q-2)}}. \tag{5.4}
\]

Since

\[
I_2 = - \int (\Lambda^s (u \cdot \nabla \omega) - u \cdot \Lambda^s \nabla \omega) |\Lambda^s \omega|^{q-2} \Lambda^s \omega \, dx, \tag{5.5}
\]

we have by Hölder’s inequality and Lemma 3.1

\[
I_2 \leq \| \Lambda^s (u \cdot \nabla \omega) - u \cdot \Lambda^s \nabla \omega \|_{L^q} \| \Lambda^s \omega \|_{L^{q-1}}^{q-1} \\
\leq C (\| \Lambda^s \omega \|_{L^q} \| \Lambda u \|_{L^\infty} + \| \omega \|_{L^\infty} \| \Lambda^{1+\kappa} u \|_{L^q}) \| \Lambda^s \omega \|_{L^q}^{q-1} \\
\leq C \| \Lambda^s \omega \|_{L^q}^q (\| \Lambda u \|_{L^\infty} + \| \omega \|_{L^\infty}). \tag{5.6}
\]

Using (5.4) and (5.6) in (5.2), we get

\[
\frac{1}{q} \frac{d}{dt} \| \Lambda^s \omega \|_{L^q}^q + (q - 1) \left(\frac{2}{q} \right)^2 \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2 \\
\leq C \| \Lambda^s \rho \|_{L^q} \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2} \| |\Lambda^s \omega|^{(q-2)/2} \|_{L^2} + C \| \Lambda^s \omega \|_{L^q} (\| \Lambda u \|_{L^\infty} + \| \omega \|_{L^\infty}) \\
\leq C \| \Lambda^s \rho \|_{L^q}^q + 1 \left(\frac{q-1}{q^2} \right) \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2 + C \| \Lambda^s \omega \|_{L^q}^q \\
+ C \| \Lambda^s \omega \|_{L^q}^q (\| \Lambda u \|_{L^\infty} + \| \omega \|_{L^\infty}), \tag{5.7}
\]

where we used Young’s inequality in the last step. Absorbing the second term on the right side into the
left side of the above inequality, we obtain

\[
\frac{d}{dt} \| \Lambda^s \omega \|_{L^q}^q + \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2 \\
\leq C \| \Lambda^s \rho \|_{L^q}^q + C \| \Lambda^s \omega \|_{L^q}^q + C \| \Lambda^s \omega \|_{L^q}^q (\| \Lambda u \|_{L^\infty} + \| \omega \|_{L^\infty}). \tag{5.8}
\]

Adding the inequalities (2.14) and (5.8) and omitting the D_0 term, we arrive at

\[
\frac{d}{dt} (\| u \|_{L^q}^q + \| \Lambda^s \omega \|_{L^q}^q) + \| \nabla (|\Lambda^s \omega|^{q/2}) \|_{L^2}^2 \\
\leq C (\| u \|_{L^q}^q + \| \omega \|_{L^q}^q + 1) \| u \|_{L^q}^{q-1} + C \| \Lambda^s \rho \|_{L^q}^q + C \| \Lambda^s \omega \|_{L^q}^q \\
+ C \| \Lambda^s \omega \|_{L^q}^q (\| \omega \|_{L^\infty} + \| \Lambda u \|_{L^\infty}). \tag{5.9}
\]
Next, we need an appropriate estimate for \(\|\Lambda^s \rho\|_{L^q}\) and \(\|\omega\|_{L^\infty} + \|Au\|_{L^\infty}\). We apply the operator \(\Lambda^s\) to the equation (1.3), multiply it with \(|\Lambda^s \rho|^{q-2}\Lambda^s \rho\), and integrate it with respect to \(x\) to get

\[
\frac{1}{q} \frac{d}{dt} \|\Lambda^s \rho\|_{L^q}^q = - \int \Lambda^s (u \cdot \nabla \rho) |\Lambda^s \rho|^{q-2} \Lambda^s \rho \, dx = - \int \Lambda^s \text{div} (u \rho) |\Lambda^s \rho|^{q-2} \Lambda^s \rho \, dx, \tag{5.10}
\]

where we used the divergence-free condition for \(u\). Since

\[
- \int \Lambda^s \text{div} (u \rho) |\Lambda^s \rho|^{q-2} \Lambda^s \rho \, dx = \int (\Lambda^s \text{div} (u \rho) - u \cdot \nabla \Lambda^s \rho) |\Lambda^s \rho|^{q-2} \Lambda^s \rho \, dx \tag{5.11}
\]

we obtain by Lemma 3.1

\[
- \int \Lambda^s \text{div} (u \rho) |\Lambda^s \rho|^{q-2} \Lambda^s \rho \, dx \leq \|\Lambda^s \text{div} (u \rho) - u \cdot \nabla \Lambda^s \rho\|_{L^q} \|\Lambda^s \rho\|_{L^q}^{q-1} \leq C \|\Lambda^s \rho\|_{L^q} \|\Lambda u\|_{L^\infty} \|\Lambda^s \rho\|_{L^q}^{q-1} + C \|\rho\|_{L^r} \|\Lambda^{1+s} u\|_{L^r} \|\Lambda^s \rho\|_{L^q}^{q-1}, \tag{5.12}
\]

where \(r_1 = 2q/(2 - s)\) and \(s_1 = 2q/s\). Denoting

\[
I = \begin{cases} [q, 2q/(2 - qs)], & \text{if } qs < 2 \\ [q, \infty), & \text{otherwise}, \end{cases} \tag{5.13}
\]

we observe that \(\rho_0 \in W^{s,q}\) implies \(\rho_0 \in L^r \) for \(r \in I\), and thus

\[
\|\rho(t)\|_{L^r} = C(M_1, r_1), \quad t > 0. \tag{5.14}
\]

For \(\|\Lambda^{1+s} u\|_{L^{r_1}}\), by the Sobolev embedding theorem and the Gagliardo-Nirenberg inequality, we have

\[
\|\Lambda^{1+s} u\|_{L^{r_1}} \leq C \|\Lambda^s \omega\|_{L^{r_1}} \leq C \|\Lambda^s \omega\|^{q/2}_{L^{2q/s}} \|\nabla|\Lambda^s \omega|^{q/2}\|_{L^2}^{2s/q} \leq C \|\Lambda^s \omega\|^{q/2}_{L^{2q/s}} \|\nabla|\Lambda^s \omega|^{q/2}\|_{L^2}^{2s/q} \leq C \|\Lambda^s \omega\|_{L^{q/2/s}} \|\nabla|\Lambda^s \omega|^{q/2}\|_{L^2}^{2s/q}, \tag{5.15}
\]

where \(\alpha = 1 - s/2\). Therefore, combining (5.10) and (5.12) with (5.15) leads to

\[
\frac{1}{q} \frac{d}{dt} \|\Lambda^s \rho\|_{L^q}^q \leq C \|\Lambda u\|_{L^\infty} \|\rho\|_{W^{s,q}}^q + C \|\rho\|_{L^r} \|\omega\|_{W^{s,q}} + C \|\omega\|_{W^{s,q}} \|\Lambda^s \omega\|_{L^q} \|\Lambda^s \rho\|_{L^q}^{q-1} + \frac{q - 1}{q^2} \|\nabla|\Lambda^s \omega|^{q/2}\|_{L^2}^2, \tag{5.16}
\]

where we used Young’s inequality and (5.14). Adding the above estimate to (5.9) and setting

\[
F(t) = \|u\|_{L^q}^q + \|\Lambda^s \omega\|_{L^q}^q + \|\rho\|_{L^r}^q + \|\Lambda^s \rho\|_{L^q}^q, \tag{5.17}
\]

we get

\[
\frac{1}{q} F'(t) + \frac{q - 1}{q} \frac{2}{q^2} \|\nabla|\Lambda^s \omega|^{q/2}\|_{L^2}^2 \leq C(1 + F(t)) + CF(t) \|\omega\|_{L^q} + CF(t)(\|\Lambda u\|_{L^\infty} + \|\omega\|_{L^\infty}).
\]
Finally, we handle the terms \(\|\Lambda u\|_{L^\infty} \) and \(\|\omega\|_{L^\infty} \). By Lemma 4.1, we get from (5.17)

\[
\frac{1}{q} F'(t) + (q-1) \frac{2}{q^2} \|\nabla(|\Lambda^s\omega|^{q/2})\|_{L^2}^2 \\
\leq C(1 + F(t)) + CF(t)\|\omega\|_{L^r} \\
+ CF(t)(1 + \|\nabla(|\omega|^{q/2})\|_{L^2}^{2/q}) (1 + \log^{1+1/q}(1 + \|\Lambda^s\omega\|_{L^r}))
\]

\[= C(1 + F(t)) + CF(t)\sqrt{1 + t} + CF(t)X(t)(1 + \log^{1+1/q}(1 + \|\Lambda^s\omega\|_{L^r})), \quad (5.18)\]

where we chose \(r \geq \max(2/s, q) \) and denoted \(X(t) = 1 + \|\nabla(|\omega|^{q/2})\|_{L^2}^{2/q} \). By (2.23)

\[
\int_0^t X^q(s) \, ds \leq C(1 + t)^{q/2} \quad (5.19)
\]

holds. As for the term \(\|\Lambda^s\omega\|_{L^r} \), we have by the Gagliardo-Nirenberg and Young’s inequalities,

\[
\|\Lambda^s\omega\|_{L^r} = \|\Lambda^s\omega|^{q/2}\|_{L^{2/q}}^{2/q} \leq (\|\Lambda^s\omega|^{q/2}\|_{L^2}^{2/q})^{2/q} \]

\[\leq \|\Lambda^s\omega\|_{L^r} + \|\nabla(|\Lambda^s\omega|^{q/2})\|_{L^2}^{2/q} \leq \|\Lambda^s\omega\|_{L^r} + C + \frac{q-1}{q^2} \|\nabla(|\Lambda^s\omega|^{q/2})\|_{L^2}^2. \quad (5.20)\]

Now we conclude the proof by applying the following Gronwall type lemma to (5.18). \(\square \)

Lemma 5.1. Assume that \(F(t) \) is a continuously differentiable function in a neighborhood of 0 and \(F(0) \leq M \). Let \(X(t), Y(t) \) and \(D(t) : [0, \infty) \to [0, \infty) \) be such that

\[
\int_0^t X(s) \, ds \leq C(1 + t)^{q/2} \quad (5.21)
\]

for some \(q \geq 2 \) and \(Y(t) \leq D(t)/2 + F(t) + \overline{M} \), where \(M \) and \(\overline{M} \) are constants. Furthermore, assume that \(F(t) \) satisfies

\[
F'(t) + D(t) \leq C(1 + F(t)) + CF(t)\sqrt{1 + t} + CF(t)X(t)(1 + \log(1 + Y(t)))^\alpha \quad (5.22)
\]

for some \(\alpha > 0 \). With \(T^* = \infty \) if \(0 < \alpha \leq 1 \) and

\[
T^* = \min \left\{ \left(\frac{1}{C(1 + \log^{\alpha-1}(M + 1))} \right)^{2/3} - 1, \frac{1}{C(1 + \log^{\alpha-1}(M + 1))^{2q/(q-2)}} \right\} \quad (5.23)
\]

for some constant \(C \) if \(\alpha > 1 \), we then have

\[
F(t) < \infty, \quad t \in [0, T^*) \quad (5.24)
\]

where \(C \) is a constant depending only on \(M, \overline{M}, \) and \(T^* \).

Proof. For the case \(\alpha \in [0, 1] \), as in [HKZ1], we have a basic inequality

\[
FX(1 + \log(1 + Y))^\alpha \leq FX(1 + \log(1 + Y)) \leq FX + \frac{Y}{C} + FX \log(1 + CFX). \quad (5.25)
\]
Hence, we have

\[
F'(t) + D(t) \leq C(1 + F(t)) + Y(t) + CF(t)X(t) + CF(t)\sqrt{1 + t} \\
+ CF(t)X(t)\log(1 + CF(t)X(t)) \\
\leq C + CF(t) + \frac{D(t)}{2} + CF(t)X(t) + CF(t)\sqrt{1 + t} \\
+ CF(t)X(t)\log(1 + F(t)) + CF(t)X(t)\log(1 + CX(t)).
\]

(5.26)

The desired result is then obtained by the usual Gronwall lemma.

If on the other hand \(\alpha > 1 \), we get

\[
FX(1 + \log^\alpha(1 + Y)) \leq FX + \frac{Y}{C} + CFX\log^\alpha(1 + CFX).
\]

(5.27)

Similarly to (5.26), we arrive at

\[
F'(t) + D(t) \leq C + CF(t) + \frac{D(t)}{2} + CF(t)X(t) + CF(t)\sqrt{1 + t} \\
+ CF(t)X(t)\log^\alpha(1 + F(t)) + CF(t)X(t)\log^\alpha(1 + CX(t))
\]

(5.28)

and the lemma is established by the classical Gronwall’s inequality. \(\square \)

6 Persistence for \(qs > 2 \) and for the intersection spaces

Given initial datum \((u_0, \rho_0) \in W^{1+s,q} \times W^{s,q}\) we do not know in general whether the solution \((u, \rho)\) stays in the space \(W^{1+s,q} \times W^{s,q}\) for all time. However, we can prove that this is so if \(sq > 2 \) or if the initial data \((u_0, \rho_0)\) belongs to the intersection space \(X = (H^{1+s} \times H^s) \cap (W^{1+s,q} \times W^{s,q})\). We consider the case \(sq > 2 \) in the next theorem, while the intersection space is addressed in Theorem 6.3 below.

Theorem 6.1. Let \(s \in (0, 1) \) and \(q \in [2, \infty) \) be such that \(sq > 2 \). Assume that \(\|u_0\|_{W^{1+s,q}} \leq M_0 \) with \(\text{div} u_0 = 0 \) and \(\|\rho_0\|_{W^{s,q}} \leq M_1 \), where \(M_0, M_1 \geq 1 \) are constants. Then there exists a unique solution \((u, \rho)\) of the equations (1.1)–(1.3) such that \(u \in C([0, \infty), W^{1+s,q}(\mathbb{R}^2)) \) and \(\rho \in C([0, \infty), W^{s,q}(\mathbb{R}^2))\).

The key ingredient making the global persistence work is the following uniform bound on the vorticity.

Lemma 6.2. Assume that \(q > 2 \) and \(\omega_0 \in W^{1,q}(\mathbb{R}^2) \), and let \(\rho \in L^\infty(0, \infty; L^\infty(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)) \). Then the unique solution \(\omega \) of the equation (2.15) with the initial data \(\omega_0 \) satisfies \(\omega \in C([0, \infty); L^\infty(\mathbb{R}^2)) \). Moreover for any \(T > 0 \) the inequality

\[
\|\omega(t)\|_{L^\infty} \leq C(\|\rho\|_{L^\infty(0, \infty; L^\infty)}; \|\omega_0\|_{W^{1,q}})\sqrt{1 + t}, \quad t \in [0, T]
\]

(6.1)

holds.

Proof. Fix \(T > 0 \). By (2.22) we have

\[
\|\omega(t)\|_{L^q} \leq C(\|\rho\|_{L^\infty(0, \infty; L^q)})\sqrt{1 + T}, \quad t \in [0, T].
\]

(6.2)
For \(p \geq q \), denote \(\phi_p = \int |\omega|^p \). Using the estimate

\[
\left| \int \rho|\omega|^{2p-2} \partial_1 \omega \, dx \right| \leq \frac{C}{p} \|\rho\|_{L^\infty} \|\nabla(|\omega|^p)\|_{L^2} \|\omega\|_{L^{2p-2}},
\]

we obtain from (2.17) that

\[
\frac{1}{2p} \phi_{2p}' + \frac{2p-1}{2p^2} \|\nabla(|\omega|^p)\|_{L^2}^2 \leq C_p \|\rho\|_{L^\infty}^2 \int \omega^{2p-2}
\leq C_p \|\rho\|_{L^\infty}^2 (\phi_p)^{2/p} (\phi_{2p})^{(p-2)/p}.
\]

(6.4)

Applying the Gagliardo-Nirenberg inequality \(\|f\|_{L^2} \leq C \|f\|_{L^2}^{1/2} \|\nabla f\|_{L^2}^{1/2} \) to \(f = |\omega|^p \) leads to

\[
\phi_{2p} \leq C \phi_p \|\nabla(|\omega|^p)\|_{L^2},
\]

(6.5)

which combined with (6.4) implies

\[
\frac{1}{2p} \phi_{2p}' + \frac{2p-1}{2p^2} \left(\frac{\phi_{2p}}{\phi_p} \right)^2 \leq C_p \|\rho\|_{L^\infty}^2 (\phi_p)^{2/p} (\phi_{2p})^{(p-2)/p}.
\]

(6.6)

Note that if

\[
\phi_{2p} \geq C^{p/(p+2)} p^{2p/(p+2)} \rho_{L^\infty}^{2p/(p+2)} \phi_p^{(2p+2)/(p+2)},
\]

(6.7)

for a sufficiently large constant \(C \), the second term on the left side dominates the term on the right and thus

\[
\phi_{2p} \leq 0.
\]

(6.8)

Denoting

\[
K_p = \|\omega\|_{L^\infty(0,T;L^p(\mathbb{R}^2))},
\]

(6.9)

\(\phi_{2p} \) may be estimated by

\[
\phi_{2p}(t) \leq \max \{ \phi_{2p}(0), C^{1/2p} p^{1/p} \rho_{L^\infty}^{1/p} K_p^{(p+1)/(p+2)} \}, \quad t \in [0, T].
\]

(6.10)

Taking the supremum in \(t \), we obtain

\[
K_{2p} \leq \max \{ C \|\omega_0\|_{W^{s,q}}, C^{1/2p} p^{1/p} \rho_{L^\infty}^{1/p} K_p^{(p+1)/(p+2)} \}.
\]

(6.11)

By induction and (6.2), we arrive at

\[
K_{2n+1,q} \leq \max \{ C \|\omega_0\|_{W^{s,q}}, K_q \} C \sum_{i=1}^{\infty} 1/2^i q \prod_{i=0}^{\infty} (2^i q)^{1/2^i q} (1 + \|\rho\|_{L^\infty(0,\infty;L^\infty)}) \sum_{i=0}^{\infty} 1/2^i q
\leq C \|\rho\|_{L^\infty(0,\infty;L^\infty)} \|\omega_0\|_{W^{s,q}} \sqrt{1 + T}, \quad t \in [0, T].
\]

(6.12)

Since the constant \(C \) does not depend on \(n \), we may pass to the limit \(n \to \infty \) to conclude the proof. \(\square \)

Next we prove Theorem 6.1.
Proof of Theorem 6.1. Since the persistence in $H^{1+s} \times H^s$ was already addressed in [HKZ2], we only need to consider the case $q > 2$. The proof is similar to that of Theorem 2.2 except that we use a different estimate for $\|Au\|_{L^\infty}$ and $\|\omega\|_{L^\infty}$. Recall that
\[
\frac{1}{q} F'(t) + (q - 1) \frac{2}{q^2} \|\nabla(|\Lambda^s \omega|^{q/2})\|_{L^2}^2 \leq C (1 + F(t)) \sqrt{1 + t} + CF(t)(\|Au\|_{L^\infty} + \|\omega\|_{L^\infty}),
\]
where $F(t) = \|u\|_{L^q}^q + \|\Lambda^s \omega\|_{L^q}^q + \|\rho\|_{L^q}^q + \|\Lambda^s \rho\|_{L^q}^q$. By Lemma 6.2, we have
\[
\|\omega\|_{L^\infty} \leq C \sqrt{1 + t}, \quad t \geq 0.
\]
From (4.9), we deduce
\[
\|Au\|_{L^\infty} \leq Cb \|\omega\|_{L^b}^{1-a} \|\Lambda^s \omega\|_{L^r}^a \leq Cb \|\omega\|_{L^q}^{(1-a)/b} \|\omega\|_{L^\infty}^{(1-q/b)(1-a)} \|\Lambda^s \omega\|_{L^r}^q
\]
\[
\leq Cb (1 + \|\omega\|_{L^q} + \|\omega\|_{L^\infty}) \|\Lambda^s \omega\|_{L^r}^2,
\]
where $rs > 2$, $b \geq q$, and $a = 2/(2 + b(s - 2/r))$. Similarly as in the proof of Lemma 4.1, we set $b = q + \log(1 + \|\Lambda^s \omega\|_{L^r})$ in order to get
\[
\|Au\|_{L^\infty} \leq C (1 + \log(1 + \|\Lambda^s \omega\|_{L^r}))(1 + \|\omega\|_{L^q} + \|\omega\|_{L^\infty}).
\]
Therefore, noting that $\|\omega(t)\|_{L^q} \leq C \sqrt{1 + t}$, we obtain
\[
\frac{1}{q} F'(t) + (q - 1) \frac{2}{q^2} \|\nabla(|\Lambda^s \omega|^{q/2})\|_{L^2}^2 \leq C (1 + F(t)) (1 + \log(1 + \|\Lambda^s \omega\|_{L^r})) \sqrt{1 + t}.
\]
We conclude the proof by using Lemma 5.1.

Denoting
\[
\|(u, \rho)\|_X = \max \{\|u\|_{H^{1+s}}, \|u\|_{W^{1+s,q}}, \|\rho\|_{H^s}, \|\rho\|_{W^{s,q}}\},
\]
the global persistence result in the intersection space X reads as follows.

Theorem 6.3. Let $s \in (0, 1)$ and $q \in [2, \infty)$. Assume that $\|(u_0, \rho_0)\|_X \leq M$ where M is an arbitrary positive constant. There exists a unique solution (u, ρ) to the equations (1.1)-(1.3) such that $(u, \rho) \in C([0, \infty), X)$. Moreover,
\[
\|(u(t), \rho(t))\|_X \leq C(M, T), \quad t \in [0, T]
\]
for any fixed $T > 0$.

In the proof, we need the following modification of Lemma 4.1.

Lemma 6.4. Assume that $u \in S(\mathbb{R}^2)^2$. Also, let $0 < s < \infty$ and $1 \leq r \leq \infty$ be such that $rs > 2$. For $2 \leq q < \infty$, with $\omega = \nabla \times u$, we have the inequalities
\[
\|Au\|_{L^\infty} \leq C (1 + \log(1 + \|\Lambda^{1+s} u\|_{L^r}))^{1/2} (1 + \|u\|_{H^2})
\]
and
\[
\|\omega\|_{L^\infty} \leq C (1 + \log(1 + \|\Lambda^s \omega\|_{L^r}))^{1/2} (1 + \|\omega\|_{H^s}).
\]
where $C = C(r, s, q)$.

16
Proof of Lemma 6.4. By (4.9), we have
\[\|Au\|_{L^\infty} \leq C\|Au\|_{L_b}^{1-a}\|\Lambda^{1+a}u\|_{L^\infty}^{a} \leq C(1 + \|Au\|_{L^p})\|\Lambda^{1+a}u\|_{L^p}^{a} \] (6.21)
where \(b \geq 2 \) and \(a \) is given in (4.8). Also, since as in (4.10),
\[\|Au\|_{L^p} \leq Cb^{1/2}(\|Au\|_{L^2} + \|\Lambda^2u\|_{L^2}) \leq Cb^{1/2}\|u\|_{H^2} \] (6.22)
we get
\[\|Au\|_{L^\infty} \leq Cb^{1/2}(1 + \|u\|_{H^2})\|\Lambda^{1+a}u\|_{L^\infty}^{a} \] (6.23)
Then choose \(b = 2 + \log(1 + \|\Lambda^{1+a}u\|_{L^r}) \) and (6.19) follows. The inequality (6.20) is proven analogously. \(\square \)

Proof of Theorem 6.3. Since the persistence in \(H^{1+s} \times H^s \) was already addressed in [HKZ2], we only need to consider the case \(q > 2 \). The proof is similar to that of Theorem 2.2 except that we use a different estimate for \(\|Au\|_{L^\infty} \) and \(\|\omega\|_{L^\infty} \). Recall that we have
\[\frac{1}{q}F'(t) + (q - 1)\frac{2}{q^2}\|\nabla(\Lambda^s\omega)^{1/2})\|_{L^2}^2 \leq C(1 + F(t))\sqrt{1 + t} + CF(t)(\|Au\|_{L^\infty} + \|\omega\|_{L^\infty}), \] (6.24)
where \(F(t) = \|u\|_{L^q} + \|\Lambda^s\omega\|_{L^q} + \|\rho\|_{L^q} + \|\Lambda^s\rho\|_{L^q} \). By Lemma 6.4 and the Calderón-Zygmund inequality, we have
\[\|Au\|_{L^\infty} \leq C(1 + \log(1 + \|\Lambda^{1+s}u\|_{L^r}))^{1/2}(1 + \|u\|_{H^2}) \leq C(1 + \log(1 + \|\Lambda^s\omega\|_{L^r}))^{1/2}(1 + \|u\|_{H^2}) \] (6.25)
and
\[\|\omega\|_{L^\infty} \leq C(1 + \log(1 + \|\Lambda^s\omega\|_{L^r}))^{1/2}(1 + \|\omega\|_{H^1}) \leq C(1 + \log(1 + \|\Lambda^s\omega\|_{L^r}))^{1/2}(1 + \|u\|_{H^2}). \] (6.26)
Therefore, we obtain
\[\frac{1}{q}F'(t) + (q - 1)\frac{2}{q^2}\|\nabla(\Lambda^s\omega)^{1/2})\|_{L^2}^2 \leq C(1 + F(t))\sqrt{1 + t} + CF(t)(1 + \|\Lambda^s\omega\|_{L^r})(1 + \log(1 + \|\Lambda^s\omega\|_{L^r}))^{1/2}. \] (6.27)
From [HKZ2] we recall that
\[\int_0^T \|u(t)\|_{H^2}^2 dt < \infty. \] (6.28)
Therefore, together with (5.20), we conclude the proof by using Lemma 5.1. \(\square \)

Corollary 6.5. Let \((u_0, \rho_0) \in W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2)\) be compactly supported and assume that \(s \) and \(q \) are the same as in the above theorem. There exists a unique solution \((u, \rho)\) to the equations (1.1)–(1.3) such that \((u, \rho) \in C([0, \infty), W^{1+s,q}(\mathbb{R}^2) \times W^{s,q}(\mathbb{R}^2))\). Moreover,
\[\|u(t)\|_{W^{1+s,q}(\mathbb{R}^2)}, \|\rho(t)\|_{W^{s,q}(\mathbb{R}^2)} \leq C, \quad t \in [0, T] \] (6.29)
for any fixed \(T > 0 \), where \(C \) depends on the initial data and \(T \).
Proof. Since \((u_0, \rho_0) \in X\) by the assumptions, the assertion follows by applying Theorem 6.3.

\[\square\]

7 Persistence with periodic boundary conditions

Using the above theorem, we may also get the global persistence in the periodic domain.

Theorem 7.1. Let \(\|u_0\|_{W^{1+s, q}(T^2)} \leq M\) where \(M\) is an arbitrary positive constant and where \(0 < s < 1\) and \(q \in [2, \infty)\). Then there exists a unique solution \((u, \rho)\) to the equations (1.1)-(1.3) such that \((u, \rho) \in C([0, \infty), W^{1+s, q}(T^2) \times W^{s, q}(T^2))\). Moreover,

\[
\|u(t)\|_{W^{1+s, q}(T^2)}, \|\rho(t)\|_{W^{s, q}(T^2)} \leq C(M, T), \quad t \in [0, T]
\]

for any fixed \(T > 0\).

Proof. Since \(H^{1+s}(T^2) \hookrightarrow W^{1+s, q}(T^2)\) and \(H^{s}(T^2) \hookrightarrow W^{s, q}(T^2)\), the theorem follows by applying Theorem 6.3 provided we can prove Lemma 3.1 for the periodic domain \(T^2\). In fact the Coifman-Mayer estimate still holds for the periodic domain as shown in [Wo]. Then the same argument as in the proof of Lemma 3.1 shows that

\[
\|[\Lambda^s \partial_j, g] f\|_{L^r(T^2)} \leq C\|f\|_{L^r(T^2)} \|\Lambda^{1+s} g\|_{L^{r_1}(T^2)} + C\|\Lambda^s f\|_{L^{r_2}(T^2)} \|g\|_{L^{r_2}(T^2)}
\]

(7.2)

holds, where \(f, g, s, j, q, r_1, r_2, \tilde{r}_1, \tilde{r}_2\) are as in the statement of Lemma 3.1, with the only differences replacing \(\xi \in \mathbb{R}^2\) and \(\eta \in \mathbb{R}^2\) by discrete variables \(m \in \mathbb{T}^2\) and \(n \in \mathbb{T}^2\).

\[\square\]

Acknowledgments

The authors would like to thank the referee for useful remarks. IK and FW were supported in part by the NSF grant DMS-1311943, while MZ was supported in part by the NSF grant DMS-1109562.

References

A. Larios, E. Lunasin, and E.S. Titi, *Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion*, J. Differential Equations 255 (2013), no. 9, 2636–2654.

