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Abstract. We prove a conjecture of Knutson asserting that the Schubert
structure constants of the cohomology ring of a two-step flag variety are equal
to the number of puzzles with specified border labels that can be created using

a list of eight puzzle pieces. As a consequence, we obtain a puzzle formula for

the Gromov-Witten invariants defining the small quantum cohomology ring of
a Grassmann variety of type A. The proof of the conjecture proceeds by show-
ing that the puzzle formula defines an associative product on the cohomology

ring of the two-step flag variety. It is based on an explicit bijection of gashed
puzzles that is analogous to the jeu de taquin algorithm but more complicated.

1. Introduction

At the end of the last millennium, Knutson gave an elegant conjecture for the
Schubert structure constants of the cohomology ring of any partial flag variety
SL(n)/P of type A [6]. The conjecture states that each Schubert structure con-
stant in H∗(SL(n)/P ;Z) is equal to the number of triangular puzzles with specified
border labels that can be created using a list of puzzle pieces. The special case
for Grassmannians was established in [9, 8]. Unfortunately, Knutson quickly dis-
covered counterexamples to his general conjecture. Buch, Kresch, and Tamvakis
later proved that the Gromov-Witten invariants defining the small quantum coho-
mology ring of a Grassmann variety are equal to Schubert structure constants on
two-step flag varieties, and it was suggested that Knutson’s conjecture might be
true in this important special case [2]. This was supported by verifying with the
help of a computer that the conjecture is correct for all two-step varieties Fl(a, b;n)
with n ≤ 16. The purpose of the present paper is to give a proof of Knutson’s
conjecture for arbitrary two-step flag varieties. As a consequence, we obtain a
quantum Littlewood-Richardson rule: a puzzle formula for the three point, genus
zero Gromov-Witten invariants on any Grassmannian of type A, see section 8.

After Knutson formulated his general conjecture and the work [2] appeared, a
different positive formula for the Schubert structure constants on two-step flag va-
rieties was proved by Coskun [4]. This rule expresses the structure constants as
the number of certain chains of diagrams called mondrian tableaux, which corre-
spond to the components of a degeneration of an intersection of Schubert varieties.
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Although it is well adapted to the geometry, Coskun’s rule does not address the
validity of Knutson’s conjecture for two-step flag varieties.

Recent work of Knutson and Purbhoo [7] shows that the Belkale-Kumar coeffi-
cients [1] for SL(n)/P are computed by a special case of Knutson’s original puzzle
conjecture. This special case uses only a subset of the puzzle pieces, and it is not
limited to 2-step flag varieties. On the other hand, the set of Belkale-Kumar coef-
ficients is a proper subset of the structure constants of the cohomology ring of any
flag variety other than a Grassmannian.

In this paper, a puzzle piece means a (small) triangle from the following list.

0
0 0

1
1 1

2
2 2

3
1 0

4
2 1

5
2 0

6
2 3

7
4 0

In Knutson’s original conjecture the side labels of the puzzle pieces were parenthe-
sized strings of the integers 0, 1, and 2. The labels that are greater than two can
be translated to such strings as follows:

3 = 10, 4 = 21, 5 = 20, 6 = 2(10), and 7 = (21)0.

This description adds intuition to the puzzle pieces. However, we will stick to labels
in the set {0, 1, 2, 3, 4, 5, 6, 7} in this paper. The labels 0, 1, 2 are called simple and
the other labels 3, 4, 5, 6, 7 are called composed.

A triangular puzzle is an equilateral triangle made from puzzle pieces with match-
ing labels. The puzzle pieces may be rotated but not reflected. If all labels on the
border of a puzzle are simple, then all composed labels in the puzzle are uniquely
determined from the simple labels. One may therefore omit the edges with com-
posed labels in pictures of puzzles. The following two pictures show the same puzzle
with and without its composed labels.
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1 0

2
2 2

2
2 2

3
6 2

2
2 2

2
0 5
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1 4
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2
1 4

0
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1 1
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1 1
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2
2 2 2

2
2 2

2
0

0
0 0

2
1

1
1 1

2
1

2
1

0 1
1 1

1
1 1

A puzzle with simple border labels is the same as an equilateral triangle made
of composed puzzle pieces from the following list. All can be rotated and the fourth
and sixth can be stretched in the direction of the longest side:

0
0 0

1
1 1

2
2 2

0 2 2
1

2 2 0
1

2 0

0 2
0 0 2

2
1

0 0
1

The Schubert varieties Xu of the flag manifold X = Fl(a, b;n) are indexed by
integer vectors u of length n, with a entries equal to 0, b− a entries equal to 1, and
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n − b entries equal to 2, see section 2. Such vectors will be called 012-strings for
X. Knutson’s conjecture for two-step flag varieties is the following result.

Theorem 1. Let Xu, Xv, and Xw be Schubert varieties in Fl(a, b;n). Then the
triple intersection number ∫

Fl(a,b;n)

[Xu] · [Xv] · [Xw]

is equal to the number of triangular puzzles for which u, v, and w are the labels on
the left, right, and bottom sides, in clockwise order.

u v

w

Theorem 1 is proved by establishing that the puzzle rule defines an associative
product on the cohomology ring of X, following the strategy introduced in [3] in
the case of Grassmannians. The corresponding identities among structure constants
are obtained from an explicit bijection of puzzles. This bijection is a generalization
of the classical jeu de taquin algorithm on semistandard Young tableaux (see [12]
for a discussion of the bijections between tableaux and puzzles), but is significantly
more involved and is defined by a list of 80 different rules for propagating a gash
from one side of a puzzle to another. A gash involves a pair of puzzle edges where
the puzzle pieces do not have matching labels, a notion introduced by Knutson and
Tao [8], and extended to our setting in section 5. The large number of propagation
rules makes a few parts of our proof tedious but still straightforward to verify.

One important property of the jeu de taquin algorithm for tableaux is that con-
secutive Schützenberger sliding paths do not cross each other (see e.g. [3, section 2]).
This implies that a suitable bijection of tableaux can be obtained by repeating the
jeu de taquin algorithm several times, an idea which has been used in many proofs
of the classical Littlewood-Richardson rule for Grassmannians, see e.g. [5, 14, 3]
and the references therein. Unfortunately, this property does not hold for the cor-
responding propagation paths in puzzles for two-step flags, which may in fact cross
each other. Example 7.7 illustrates the problem. We overcome this difficulty by
carrying out several propagations simultaneously , interlacing the individual steps,
to obtain the desired bijection. Naturally, this requires some care, and the precise
manner in which the simultaneous propagations are controlled is the main technical
innovation in this paper. The issue of crossing propagation paths shapes our proof
in subtle but significant ways; for example, while there are many possible ways to
formulate the propagation rules, our presentation is tailored to handle crossings as
seamlessly as possible.

This paper is organized as follows. In section 2 we reduce the proof of Theorem 1
to the verification of two identities which roughly state that the puzzle rule defines
an associative ring. Section 3 proves one of these identities, which says that mul-
tiplication by one has the expected result. We also reformulate the puzzle rule in
terms of rhombus shaped puzzles and identify the required properties of a bijection
on such puzzles. Section 4 defines a relation on strings of puzzle labels that gener-
alizes the Pieri rule for two-step flag varieties. This relation is crucial for carrying
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out multiple propagations simultaneously and for dealing correctly with crossing
propagation paths. In section 5 we give an informal discussion of propagations in
two-step puzzles, after which section 6 gives the complete list of propagation rules
together with case-by-case analysis that verifies that every (unfinished) gash can be
moved by a unique rule. At a first reading, section 6.1 through 6.6 may very well
be skimmed, with greater attention given to section 6.7, which records properties
essential to the proof of the main result. Section 7 puts the combinatorial con-
structions together to obtain the required bijection and finish the proof. Finally,
section 8 applies Theorem 1 to obtain a quantum Littlewood-Richardson rule for
the Gromov-Witten invariants on Grassmannians.

2. Strategy of the proof

Theorem 1 will be proved by applying the following principle to the multiplicative
action of the cohomology ring H∗(X;Z) on itself. This principle was first applied
to classical Schubert calculus in [3]. A related principle in the setting of equivariant
cohomology was introduced in [11] and used in [8].

Lemma 2.1. Let R be an associative ring with unit 1, let S ⊂ R be a subset that
generates R as a Z-algebra, and let M be a left R-module. Let µ : R ×M → M
be any Z-bilinear map satisfying that, for all r ∈ R, s ∈ S, and m ∈ M we have
µ(1,m) = m and µ(rs,m) = µ(r, sm). Then µ(r,m) = rm for all (r,m) ∈ R×M .

Proof. Since R is generated by S and µ is linear in its first argument, it is enough
to show that µ(r,m) = rm whenever m ∈ M and r = s1s2 · · · sk is a product of
factors si ∈ S. This follows from the assumptions by induction on k. �

Let X = Fl(a, b;n) = {(A,B) : A ⊂ B ⊂ C
n and dim(A) = a and dim(B) = b}

be the variety of two-step flags in C
n of dimensions (a, b). Let e1, . . . , en be the

standard basis for Cn. For a subset S ⊂ C
n, we let 〈S〉 ⊂ C

n denote the span of S.
A 012-string for X is a string u = (u1, . . . , un) with a zeros, b− a ones, and n− b
twos; this corresponds to a minimal length coset representative for the parabolic
subgroup Sa × Sb−a × Sn−b of the Weyl group Sn.

Given a 012-string forX, consider the point (Au, Bu) ∈ X, where Au = 〈ei : ui =
0〉 and Bu = 〈ei : ui ≤ 1〉. The Schubert variety Xu ⊂ X is the closure of the orbit
of (Au, Bu) for the action of the lower triangular matrices in GL(n). Equivalently,
Xu is the variety of points (A,B) ∈ X for which dim(A∩ 〈ep, . . . , en〉) ≥ dim(Au ∩
〈ep, . . . , en〉) and dim(B ∩ 〈ep, . . . , en〉) ≥ dim(Bu ∩ 〈ep, . . . , en〉) for all p ∈ [1, n].
The codimension of Xu in X is equal to the number of inversions ℓ(u) = #{(i, j) :
1 ≤ i < j ≤ n and ui > uj}. The Schubert classes [Xu] given by all 012-strings
for X form a basis for the cohomology ring H∗(X;Z). The Poincaré dual of the
012-string u = (u1, u2, . . . , un) is the reverse string u∨ = (un, un−1, . . . , u1). With
this notation we have

∫
X
[Xu] · [Xv] = δu∨,v.

Given 012-strings u, v, and w for X, we let Cw
u,v be the number of triangular

puzzles with labels u, v, and w on the left, right, and bottom borders, with u and
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v in clockwise direction and w in counter-clockwise direction.

u v

w

Define a Z-bilinear map µ : H∗(X;Z)×H∗(X;Z)→ H∗(X;Z) by

µ([Xu], [Xv]) =
∑

w

Cw
u,v[Xw] ,

where the sum is over all 012-strings w for X. It follows from Poincaré duality that
Theorem 1 is equivalent to the identity

(1) µ([Xu], [Xv]) = [Xu] · [Xv]

for all 012-strings u and v for X. We will prove this by identifying a generating
subset S ⊂ H∗(X;Z) of special Schubert classes that satisfies the conditions of
Lemma 2.1.

Given two 012-strings u and u′, with u = (u1, u2, . . . , un), we write u
1
−→ u′ if

there exist indices i < j such that (1) ui ∈ {0, 1}, (2) uj = 2, (3) uk < ui for all
k with i < k < j, and (4) u′ is obtained from u by interchanging ui and uj . This
corresponds to a covering relation in the ordering induced from the Bruhat order

on Sn. More generally, for p ∈ N we write u
p
−→ u′ if there exists a sequence u =

u0 1
−→ u1 1

−→ · · ·
1
−→ up = u′ such that, if ut is obtained from ut−1 by interchanging

the entries of index it and jt, then jt ≤ it+1 for all t ∈ [1, p− 1]. For example, the
chain

(0, 2, 1, 1, 0, 0, 2, 0, 2, 0, 2)
1
−→ (2, 0, 1, 1, 0, 0, 2, 0, 2, 0, 2)

1
−→ (2, 0, 1, 2, 0, 0, 1, 0, 2, 0, 2)

1
−→ (2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 2)

1
−→ (2, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0) .

implies that

(0, 2, 1, 1, 0, 0, 2, 0, 2, 0, 2)
4
−→ (2, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0) .

Given an integer p with 0 ≤ p ≤ n − b, we let p denote the 012-string p =
(0a, 1b−a−1, 2p, 1, 2n−b−p). This string defines the special Schubert variety

Xp = {(A,B) ∈ X | B ∩ 〈eb+p, . . . , en〉 6= 0} .

The corresponding special Schubert class is the Chern class [Xp] = cp(C
n
X/B),

where A ⊂ B ⊂ C
n
X = C

n × X is the tautological flag of subbundles on X. The
Pieri formula for X states that [10, 13]

(2) [Xp] · [Xu] =
∑

u
p
−→u′

[Xu′ ] ,

where the sum is over all 012-strings u′ for which u
p
−→ u′.

We will derive (1) as a consequence of the following two identities, which will be
proved later using an explicit bijection of puzzles (c.f. [3, Proposition 1]). Recall
that 0 = (0a, 1b−a, 2n−b) is the identity 012-string for which [X0] = 1 ∈ H∗(X;Z).
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Proposition 2.2. Let u, v, and w be 012-strings for X and let p ≥ 0 be an integer.
Then we have

(3) Cw
0,u = δu,w

and

(4)
∑

u
p
−→u′

Cw
u′,v =

∑

v
p
−→v′

Cw
u,v′ .

Fix an orthogonal form on C
n and set X̂ = Fl(n − b, n − a;n). Then the map

φ : X → X̂ that sends a point (A,B) to (B⊥, A⊥) is an isomorphism of varieties,
called the duality isomorphism. The corresponding isomorphism of cohomology

rings φ∗ : H∗(X̂;Z)→ H∗(X;Z) is given by φ∗[X̂û] = [Xu], where û = (2−un, 2−
un−1, . . . , 2− u1).

For each integer p ∈ [0, a], define the 012-string p̃ = (0a−p, 1, 0p, 1b−a−1, 2n−b).
This string defines the special Schubert variety

Xp̃ = {(A,B) ∈ X | dim(A ∩ 〈ea−p+2, . . . , en〉) ≥ p}

and the special Schubert class [Xp̃] = cp(A
∨) ∈ H∗(X;Z). By applying φ∗ to both

sides of the Pieri rule (2) for X̂, we obtain the identity

(5) [Xp̃] · [Xu] =
∑

u
p̃
−→u′

[Xu′ ]

in H∗(X;Z), where we write u
p̃
−→ v if and only if û

p
−→ v̂.

The duality isomorphism has a corresponding bijection on puzzles that reflects
a puzzle in a vertical line and substitutes all labels according to the following rule:

0 7→ 2 ; 1 7→ 1 ; 2 7→ 0 ; 3 7→ 4 ; 4 7→ 3 ; 5 7→ 5 ; 6 7→ 7 ; 7 7→ 6 .

This bijection implies that we have Cw
u,v = Cŵ

v̂,û for all 012-strings u, v, w for X. In

particular, equation (4) applied to X̂ gives the identity

(6)
∑

u
p̃
−→u′

Cw
u′,v =

∑

v
p̃
−→v′

Cw
u,v′ ,

for all 012-strings u, v, w for X and integers p ∈ [0, a].

Proof of Theorem 1. Set R = M = H∗(X;Z) and

S = {[Xp] : 1 ≤ p ≤ n− b} ∪ {[Xp̃] : 1 ≤ p ≤ a} .

By using that X is a Grassmann bundle over a Grassmann variety it follows that
R is generated by S. The identity (3) shows that µ(1, [Xu]) = [Xu], and (4) and
(6) together with the Pieri formulas (2) and (5) imply

µ([Xu]·[Xp], [Xv]) =
∑

u
p
−→u′

µ([Xu′ ], [Xv]) =
∑

v
p
−→v′

µ([Xu], [Xv′ ]) = µ([Xu], [Xp]·[Xv])
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for all 012-strings u and v for X and 1 ≤ p ≤ n − b, and an analogous identity
with [Xp̃] for 1 ≤ p ≤ a. By the bilinearity of µ this shows that the conditions of
Lemma 2.1 are satisfied. We deduce that equation (1) holds for all 012-strings u
and v, as required. �

3. Multiplication by one

In this section we prove the first claim in Proposition 2.2 and use it to reformulate
the puzzle formula in terms of rhombus-shaped puzzles. We need the following
lemma.

Lemma 3.1. Let 0 = (0n0 , 1n1 , 2n2) be an identity string and let x ∈ {0, 1, 2} be a
simple label that occurs in this string. Then there exists a unique union of matching
puzzle pieces of the form

0

0′

x x

with left label x and bottom labels 0 in right-to-left direction. The right border of
this unique puzzle has label x, and the labels on the top border is the identity string
0′ obtained by removing one copy of x from 0.

Proof. We consider each possible value of x in turn. If x = 0, then the shape must
be filled with (unions of) puzzle pieces from the following list:

(a)
2

2
0 05 (b)

1

1
0 03 (c)

0
0 0 (d)

0

0
00 0

In fact, if we fill the shape from left to right, then we are forced to place the rhombus
(a) above each 2 on the bottom border. After this we must place the rhombus (b)

above each 1 on the bottom border; the only alternative rhombus
6

1
0 23 cannot

be used because each 1-label on the bottom border is followed by a 0 or a 1 to
the right. Finally, the triangle (c) must be placed above the first 0 on the bottom
border, and the rest of the shape must be filled with the rhombus (d).

If x = 1, then a similar argument shows that the shape must be filled with the
(unions of) puzzle pieces:

2

2
1 14

1
1 1

1

1
11 1

0

0
31 1

And if x = 2, then the shape must be filled with the pieces:

2
2 2

2

2
22 2

1

1
42 2

0

0
52 2

In all three cases exactly one single triangle is used, with the label x on all sides.
This accounts for the removed x on the top border. �
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The first identity in Proposition 2.2 follows from the following corollary.

Corollary 3.2. Let v be any 012-string for X and let 0 = (0a, 1b−a, 2n−b) be the
identity string. Then there exists a unique triangular puzzle with labels 0 on the
left border and labels v on the right border, both in clockwise direction.

0 v

v

The bottom labels of this unique puzzle are v, in counter-clockwise direction.

Proof. This follows by induction on the number of rows, using the 120 degree
clockwise rotation of Lemma 3.1. �

For technical reasons it is convenient to express the constants Cw
u,v in terms of

puzzles of rhombus shape. We will use this interpretation in the proof of the second
identity of Proposition 2.2.

Corollary 3.3. The constant Cw
u,v is equal to the number of puzzles of the following

rhombus shape, with top border u, right border 0, bottom border v, and left border
w, with u, 0, and v in clockwise direction and w in counter-clockwise direction.

w

u

0

v

Proof. Any such rhombus shaped puzzle consists of the (rotated) unique puzzle
from Corollary 3.2 in the lower-right half and a (rotated) triangular puzzle with
border labels u, v, and w in the upper-left half. �

Let u, v, and w be 012-strings for X and let p ∈ [0, n− b]. To prove the second
identity of Proposition 2.2, it suffices to construct a bijection between the set of

rhombus shaped puzzles with border labels u′,0, v, w such that u
p
−→ u′, and the set

of rhombus shaped puzzles with border labels u,0, v′, w such that v
p
−→ v′.

w

u′

0

v

←→ w

u

0

v′

We will construct a more general bijection where the top and bottom borders are
not required to have simple labels. The advantage of this is that we can restrict
our attention to puzzles with a single row. The first ingredient in our construction

is an appropriate generalization of the Pieri relation u
p
−→ v for strings of arbitrary

labels. This is the subject of the next section.
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4. A Pieri rule for label strings

Define a label string to be any finite sequence u = (u1, u2, . . . , uℓ) of integers
from the set [0, 7] = {0, 1, 2, 3, 4, 5, 6, 7}. These strings are generalizations of the
012-strings that represent Schubert classes on two-step flag varieties. In this section

we introduce a generalization of the Pieri relation u
p
−→ v that has meaning when u

and v are arbitrary label strings of the same length.

We start by defining the basic relation u
1
−→ v. This relation implies that v is

obtained by changing exactly two entries of u. There are 15 possible rules for how
the entries can be changed, and in each case there are restrictions on which entries
can appear between the entries being changed. Each rule is determined by a triple
((a1, b1), S, (a2, b2)) where a1, b1, a2, b2 ∈ [0, 7] and S ⊂ [0, 7]. The corresponding
rule says that, if u contains a substring consisting of a1 followed by any number
of integers from S and ending in a2, then one may replace a1 in the substring
with b1 and simultaneously replace a2 with b2. We will use the following graphical
representation of the rule:

a1

b1
S∗

a2

b2

The set S is specified by listing its elements followed by a star to indicate that its
elements can be repeated. If S is empty, then the middle third of the line segment
is omitted. The complete list of rules is given in Table 1. These rules are organized
into six types called A, B, C, D, E, F, (these have no relation to the classification
of types in Lie theory!). Notice that just two of the rules relate 012-strings, and

these reproduce the definition of u
1
−→ v from section 2; the remaining rules follow

a similar pattern. As we will see in section 5, the complete set of rules defining

u
1
−→ v arises as a subset of the gashes that can occur in propagation algorithm.

Definition 4.1. Let u and v be label strings of the same length. Then the relation

u
1
−→ v holds if and only if v can be obtained from u by using one of the rules in

Table 1. In this case we say that the relation u
1
−→ v has index (i, j), where i < j

are the unique integers such that ui 6= vi and uj 6= vj .

Example 4.2. According to the second rule of type D, we have 72130335644
1
−→

72230337644, and this relation has index (3, 8).

Definition 4.3. Let u and v be label strings of the same length. A Pieri chain

from u to v is a sequence u = u0 1
−→ u1 1

−→ · · ·
1
−→ up = v such that, if ut−1 1

−→ ut

has index (it, jt) for each t, then is < jt whenever s ≤ t. The Pieri chain is right-
increasing if it satisfies the stronger condition j1 < j2 < · · · < jp. We will write

u
p
−→ v if there exists a Pieri chain of length p from u to v.

Example 4.4. We have 04730202245
5
−→ 40720522015, with (right-increasing)

Pieri chain 04730202245
1
−→ 40730202245

1
−→ 40720302245

1
−→ 40720320245

1
−→

40720322045
1
−→ 40720522015.

Notice that some swaps of integers in a Pieri chain can happen inside others: for
instance, in example 4.4 the fourth swap (at position (8, 9)) happens inside the fifth
(at position (6, 10)). In section 7, this property will be utilized to allow propagation
paths to cross each other in a controlled way. The two results below are essential



10 A. S. BUCH, A. KRESCH, K. PURBHOO, AND H. TAMVAKIS

Type Rule

A
0
2

2
0

B
3
2 0* 2

3

C
0
4 2* 4

0

D
1
2 03* 2

1
1
2 03* 5

7
7
5 03* 2

1
7
5 03* 5

7

E
1
4 02* 4

1
1
4 02* 5

3
3
5 02* 4

1
3
5 02* 5

3

F
0
5 24* 5

0
0
5 24* 6

1
1
6 24* 5

0
1
6 24* 6

1

Table 1. Rules for the Pieri relation on label strings.

for this application. Notice also that the definitions imply that u
p
−→ v if and only

if v∨
p
−→ u∨, where u∨ denotes the label string u in reverse order.

Lemma 4.5. Let u
1
−→ v

1
−→ w be a Pieri chain, where u

1
−→ v has index (i, j) and

v
1
−→ w has index (k, l). Assume that k < j. Then we have either i < k < l < j,

u
1
−→ v has type E, and v

1
−→ w has type A, or k < i < j < l, u

1
−→ v has type A,

and v
1
−→ w has type E. Furthermore, there exists a unique label string v′ such that

u
1
−→ v′

1
−→ w is a Pieri chain with the inequalities and types interchanged.

Proof. Assume that u
1
−→ v follows the rule ((a1, b1), S, (a2, b2)) and that v

1
−→ w

follows the rule ((c1, d1), T, (c2, d2)), both of which come from Table 1:
a1

b1
S∗

a2

b2 and

c1

d1
T∗

c2

d2

Then we have vi = b1, vj = b2, vk = c1, vl = c2, vs ∈ S for i < s < j, and vs ∈ T for
k < s < l. By inspection of Table 1 we have b1, c2 ∈ {2, 4, 5, 6}, b2, c1 ∈ {0, 1, 3, 7},
and S ∪ T ⊂ {0, 2, 3, 4}. It follows that i, j, k, l are pairwise distinct integers, and
the inequalities i < j, k < l, i < l, k < j allow exactly four possibilities for their
relative orderings. We consider these possibilities in turn.

Case 1: Assume that i < k < j < l. Then c1 ∈ S and b2 ∈ T . Using that
b2, c1 ∈ {0, 1, 3, 7}∩{0, 2, 3, 4} = {0, 3}, we deduce that both of the applied rules are
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not of type A, C, D, or F. This in turn implies that c1 = b2 = 3 and S ∪T ⊂ {0, 2},
a contradiction.

Case 2: Assume that k < i < l < j. This case is impossible by an argument
similar to Case 1.

Cases 3 and 4: Assume that i < k < l < j or k < i < j < l. Then c1, c2 ∈ S or
b1, b2 ∈ T , which implies that the types of the rules are as stated in the lemma. In
both cases the label string v′ is obtained by setting v′k = d1, v

′

l = d2, and v′s = us

for s 6= k, l. �

Corollary 4.6. Let u and v be label strings of the same length and let p ∈ N.

(a) Assume that u
p
−→ v. Then u is a 012-string if and only if v is a 012-string.

(b) Assume that both u and v are 012-strings. Then the relation u
p
−→ v of the

Pieri rule (2) holds if and only if u
p
−→ v holds in the sense of label strings.

Proof. Only the rule of type A and the first rule of type D in Table 1 can be applied
to a 012-string, and they will replace such a string with a new 012-string. Part (a)

and the special case of (b) in which p = 1 follow from this. Let u = u0 1
−→ u1 1

−→

· · ·
1
−→ up = v be a Pieri chain such that ut−1 1

−→ ut has index (it, jt) for each t.

Since no relation ut−1 1
−→ ut has type E, it follows from Lemma 4.5 that jt ≤ it+1

for each t. The general case of part (b) follows from this. �

Proposition 4.7.

(a) Let u and v be label strings with u
p
−→ v. Then there exists a unique right-

increasing Pieri chain from u to v.

(b) Let u = u0 1
−→ u1 1

−→ · · ·
1
−→ up = v be any Pieri chain from u to v, and let

(it, jt) be the index of ut−1 1
−→ ut for each t ∈ [1, p]. If j1 = min{j1, . . . , jp},

then u1 belongs to the unique right-increasing Pieri chain from u to v.

Proof. Let u = u0 1
−→ u1 1

−→ · · ·
1
−→ up = v be any Pieri chain, and let ut−1 1

−→ ut

have index (it, jt). Assume that jt+1 ≤ jt for some t. Then it+1 < jt, so Lemma 4.5
implies that it < it+1 < jt+1 < jt. Moreover, there exists a label string v′ such

that ut−1 1
−→ v′ has index (it+1, jt+1) and v′

1
−→ ut+1 has index (it, jt). By replacing

ut with v′, we obtain a new Pieri chain where the pairs (it, jt) and (it+1, jt+1) are
interchanged. We repeat this procedure until j1 < j2 < · · · < jp. This shows that
there exists at least one right-increasing Pieri chain from u to v. If the initial Pieri
chain satisfies j1 = min{j1, . . . , jp}, then the string u1 will never be replaced and
will remain unchanged in the right increasing Pieri chain.

To see that the right-increasing Pieri chain is uniquely determined from u and

v, assume that the last step up−1 1
−→ v follows the rule ((a1, b1), S, (a2, b2)), and let

(i, j) be the index of the last step. Notice that j is the largest integer for which
uj 6= vj , and we have (a2, b2) = (uj , vj). This pair determines the type of the rule,
which in turn determines the set S. Now i is the largest integer for which i < j and
vi /∈ S. We have b1 = vi, and the entire rule is determined by the triple (b1, a2, b2).
We now obtain up−1 by applying the inverse rule to v, and by induction there exists
a unique right-increasing Pieri chain from u to up−1. �
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5. Gashes and swap regions

In this section we will work with parallelogram shaped puzzles with a single
row, such that the left and right border edges have simple labels. Such puzzles
will be called single-row puzzles. We will say that a single-row puzzle has border
(c1, u, v, c2) if u is the string of labels on the top border from left to right, v is the
string of labels on the bottom border from left to right, c1 is the simple label on
the left border, and c2 is the simple label on the right border.

c1

u

c2

v

Given label strings u and v′ of the same length, simple labels c1, c2 ∈ {0, 1, 2}, and
an integer p ≥ 0, we will construct a bijection between the set of single-row puzzles

with border (c1, u
′, v′, c2) for which u

p
−→ u′, and the set of single-row puzzles with

border (c1, u, v, c2) for which v
p
−→ v′. We start with the simplest case where p = 1.

The bijection is formulated in terms of gashed single-row puzzles in which some
puzzle pieces next to each other do not have matching labels. More precisely, a
gash is a pair of puzzle edges with labels on both sides, together with a connected
sequence of edges between them, so that certain conditions are satisfied. The two
edges with labels on both sides are called the left leg and the right leg of the gash.
By definition, every gash must have one of the types A, B, C, D, E, F, which
correspond to the types of the Pieri relations in Table 1, but since the edges of
a gash need not all be horizontal, the definitions are not identical. For each type
there are a set of choices for the left leg, the middle segment of edges, and the right
leg. These choices are listed in Table 2 and may be combined in any way, as long
as the orientation of the edges remains as shown, and the height of the gash is at
most one, i.e. at most one non-horizontal edge may be included. The labels of the
edges in Table 2 should be understood in the same way as for the Pieri relation
in the previous section. If a horizontal edge is labeled with a sequence of numbers
followed by a star, then any number of connected horizontal edges with labels from
the sequence may be included. A non-horizontal edge labeled with a sequence of
numbers means a single edge whose label is one of these numbers. Notice that
Table 1 lists all possible horizontal gashes.

Example 5.1. Here are two gashes, one of type D and another of type F.

7
5

2
1

3
6

3 0
and 0 2

6
14 2

Let P be a single-row puzzle with border (c1, u
′, v′, c2) such that u

1
−→ u′. Then

the label string u′ can be obtained by interchanging two entries of u. Change the
corresponding two edges on the top border of P to have the entries of u as their top
labels and the entries of u′ as their bottom labels. This creates a horizontal gash on
the top border of P , and the resulting gashed puzzle contains all the information
required by the bijection. We will formulate the bijection as a transformation rule
on gashed puzzles. This transformation takes a single-row puzzle with a gash on
the top border and changes it by propagating the gash to the bottom border.
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Type Left leg Middle segment Right leg

A
0
2

2
0

B
3
2 0* 2

3

C
0
4 2* 4

0

3 2 2 3

D
1
2 03* 2

1

7
5

03*

03*
0156

5
7

4 2

03*

03*
02 2 4

E
1
4 02* 4

1

3
5

02*

02*
03

5
3

1 2

02*

02*
0156 2 1

F
0
5

5
0

1
6 24* 6

1

0 2 2 0

Table 2. Gashes allowed in a gashed puzzle.

If a gash is not on the bottom border of its puzzle, then we define the front edge
of the gash as follows. If the gash is horizontal on the top border, then the front
edge is the left leg. Otherwise the front edge is the unique non-horizontal edge of
the gash. A propagation is carried out by one or more steps that move the front
edge to the right. The labels between the old and new front edges may be changed
in the process, and the type of the gash may change as well. The subset of puzzle
pieces and edges that are changed is called a swap region, and the change itself is
called a swap. The result of the bijection is the gashed puzzle obtained when the
gash reaches the bottom border. Before we give the complete list of swap regions



14 A. S. BUCH, A. KRESCH, K. PURBHOO, AND H. TAMVAKIS

and the proof that propagations are well-defined (in section 6), we first consider
two examples.

Example 5.2. Let u = 0241, u′ = 2041, and v′ = 5410. If we start with the
unique single-row puzzle with border (2, u′, v′, 0) and use u to introduce a gash on
the top border, then this gash is propagated to the bottom border by the following
sequence of swaps. Each of these swaps is carried out by applying a unique named
swap region.

0
2

2
0 4 1

5 4 1 0
2 0 0 02 0 7 3 0 7→

0 2 4 1

0
5 4 1 0

5 2 0 0 02 2 7 3 0 7→

0 2 4 1

0
5 4 1 0

5 2 2 0 02 2 1 3 0 7→

0 2 4 1

0
5 4 6

1 0
5 2 2 02 2 1 3 0

The swap region that is applied first is called AF. It has the following effect.

AF :

0
2

2
0

5
2 02 0 7→

0 2

0
5

5 2 02 2

The name indicates that a gash of type A is replaced with a gash of type F. A more
compact description of this rule is given in the following diagram.

AF :

0
2

2
0

0
5

2 02

This diagram shows the gashes both before and after the swap. To obtain the
region before the swap, one replaces all gashes on the bottom and right sides with
their outside labels. The region after the swap is obtained by replacing the gashes
on the top and left sides with their outside labels. In both cases the labels of the
inner edges are uniquely determined by requiring that the interior of a swap region
is a union of puzzle pieces with matching labels. The other two swap regions used
in the example are called FF11 and FF9.

FF11 :
4

4
2 0 2 0 ; FF9 :

6
1

2 0 3

Example 5.3. Let u = 1015, u′ = 1027, and v′ = 2031, consider the unique single-
row puzzle with border (1, u′, v′, 2), and use u to create a gash on the top border.
In this case the propagation carries out the following sequence of swaps.
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1 0 1
2

5
7

2 0 3 1
1 7 1 41 4 4 0 2 7→

1 0 1 5
7

1
2 0 3 1

1 3 1 41 1 1 0 2 7→

1 0 1 5
7

1
2 0 3 1

1 3 1 41 1 1 0 2 7→

1 0 1 5

1
2 0 3 1

1 3 1 2 41 1 1 0 2 7→

1 0 1 5

1
2 0 3 2

1

1 3 1 21 1 1 0 2

This example uses the swap regions DD2, DD11, DD17, and DD7.

DD2 :
0* 1

2

1
2 0*

1 1 ; DD11 :

3
1 0

DD17 :

5
7
2 40 ; DD7 :

2
1

2 4 2

The label 0∗ on the first swap region DD2 indicates that the corresponding edges
may be repeated any number of times, including zero. The swap region DD11 does
not cause any change to the puzzle; it simply allows the front edge of a gash to
move to the right.

6. Propagation rules

In this section we give the complete list of swap regions required for carrying out
the bijection for p = 1. At the same time we prove that any gash that is not on the
bottom border of its puzzle can be moved to the right by applying a unique swap
region. This establishes that the list of swap regions gives a well defined map on
gashed puzzles.

Each gash type comes with its own set of swap regions. More precisely, a swap
region may be used only if its name starts with the type of the gash at hand. The
proof that the list of swap regions is complete consists of a case-by-case analysis
of all possible gashes: we exhaustively consider all cases for how the puzzle may
look near the gash, and provide a unique swap region to cover every possibility.
This analysis is organized by gash type and comprises sections 6.1 through 6.6.
The reader who does not wish to verify the completeness of the analysis may safely
skim these sections. In section 6.7, we record the properties of the list that are
essential to the proof of Proposition 2.2.

In the following we assume that we are given a gashed single-row puzzle, such
that the gash is not located on the bottom border. We will identify the unique swap
region that must be applied to propagate the gash. If the front edge of the gash is
not horizontal, then this edge will be the left side of the swap region. Similarly, if
applying the swap region results in a new gash that is not on the bottom border,
then the front edge of the new gash is taken to be the right side of the swap region.
In all cases, the reader should observe that the simplicity of the left and right
border labels implies that the indicated swap regions are completely contained in
the puzzle.
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6.1. Swap regions for a gash of type A. Assume that the gash is of type A.
Then it is located on the top border of the puzzle. Let a and b be the labels of the
edges going south-west and south-east from the middle node of the gash.

0
2

2
0

a b

The following table lists all possible values of a and b together with the unique
swap region that can be applied in each case. Notice that the ‘Before’ and ‘After’
fields indicate only one particular instance of swap regions that include stretchable
edges.

a b Name Rule Before After

0 0 AA1
0
2

2
0

0
2

2
0

0 0

0
2

2
0

2 0
0 0 05 0

0 2

0
2

2
0

0 0 00 5

1 0 AB
0* 0

2
2
0

3
2 0* 2

3

1 0
0 0

2
2
0

2 0 3
1 7 1 04 4 0

0 0 2

3
2 0 2

3

1 0 0 00 0 5

1 1 AD
0* 0

2
2
0

1
2 0* 2

1

1 3
0 0

2
2
0

2 0 1
1 7 1 34 4 1

0 0 2

1
2 0 2

1

1 3 3 31 1 6

1 4 AA2
0
2

2
0

0
2

2
0

4 4

0
2

2
0

2 0
1 74 4 4

0 2

0
2

2
0

7 14 4 4

2 0 AF
0
2

2
0

0
5

2 02

0
2

2
0

5
2 02 0

0 2

0
5

5 2 02 2

2 1 AC
0
2

2
0

0
4

2 32

0
2

2
0

4
2 32 1

0 2

0
4

5 2 32 2

2 2 AA3
0
2

2
0

0
2

2
0

2 2

0
2

2
0

2 0
2 52 2 2

0 2

0
2

2
0

5 22 2 2

3 1 AA4
0
2

2
0

0
2

2
0

3 3

0
2

2
0

2 0
3 3 36 1

0 2

0
2

2
0

3 3 31 6

6.2. Swap regions for a gash of type B. Assume now that the gash is of type
B, located on the top border of the puzzle. Let a and b be the labels of the edges
indicated in the picture.

3
2

2
30*

a b

The table lists the possible values of a and b together with the corresponding swap
regions.
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a b Name Rule Before/After

0 0 BA
3
2 0* 2

3

0
2

2
0 0*

0 1

Before:
3
2 0 2

3

2 0 0
0 0 0 15 0 0

After:
3 0 2

0
2

2
0 0

0 1 7 10 4 4

1 0 BB1
0* 3

2 0* 2
3

3
2 0* 2

3 0*
1 1

Before:
0 3

2 0 2
3

2 0 3 0
1 7 1 0 14 4 0 0

After:
0 3 0 2

3
2 0 2

3 0
1 0 1 7 10 0 4 4

2 0 BE
3
2 0* 2

3

3
5 0*

2 12

Before:
3
2 0 2

3

5 0
2 0 12 0 0

After:
3 0 2

3
5 0

6 5 2 12 2 2

2 2 BB2
3
2 0* 2

3

3
2 0* 2

3

2 2

Before:
3
2 0 2

3

2 0 3
2 5 62 2 2 2

After:
3 0 2

3
2 0 2

3

6 5 22 2 2 2

6.3. Swap regions for a gash of type C.

6.3.1. Assume that the gash has type C and is located at the top border of the
puzzle. Let a be the indicated label.

0
4

4
02*

a

The table lists the possible values of a and the corresponding swap regions.

a Name Rule Before After

0 CC1
0
4 2* 4

0

0
4 2* 4

0

0 0

0
4 2 4

0

4 2 0
0 0 0 07 5 0

0 2 4

0
4 2 4

0

0 0 0 00 5 7

2 CC2
0
4
3 21

0
4

21
0

3 21

6.3.2. Assume that the gash has type C with the following shape. Let a and b
be the labels of the edges going south-east and east from the top node of the left
leg. Notice that b may be the right leg of the gash, in which case the value of b is
displayed as 4

0 .

4
0

3 2

2*b
a
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The table lists the possible values of a and b together with the corresponding swap
regions.

a b Name Rule Before After

0 4
0 CF

4
0

0
5

3 2 2 0

4
0

5
3 2 00

4

0
5

3 2 01

1 4
0 CC3

4
0

0
4

3 2 2 3

4
0

4
3 2 31

4

0
4

3 2 31

2 4
0 CA

4
0

0
2

2
0

3 2 2

4
0

2 0
3 2 52 2

4

0
2

2
0

3 21 2

2 2 CC4
2

2
3 2 3 2

2

2
3 2 22

2

2
3 3 26

6.3.3. Assume that the gash has type C with the following shape. The unique
applicable swap region is determined by the indicated label a.

0
4

2 3
2* a

a Name Rule Before After

0 CC5
4
0

2 3 1
0

2 3 1
4
0

2 1

2 CC6
2

2
2 3 2 3

2

2
2 3 36

2

2
2 2 32

6.4. Swap regions for a gash of type D.

6.4.1. Assume that the gash has type D and is located on the top border of the
puzzle. Let a be the labels of the left leg and let b be the label of the edge going
south-west from the right node of the left leg.

03*a
b

The table lists the possible values of a and b and the corresponding swap regions.
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a b Name Rule Before After

1
2 0 DD1

1
2

1
2

0 0

1
2

2
0 05

1

1
2

0 03

1
2 1 DD2

0* 1
2

1
2 0*

1 1
0 1

2

2 0
1 7 14 4

0 1

1
2 0

1 3 11 1

1
2 2 DD3

1
2
4 22

1
2

22
1

4 22

1
2 3 DA

1
2 0* 2

1

0
2

2
0 0*

3 1

1
2 0 2

1

2 0 0
3 3 3 16 1 1

1 0 2

0
2

2
0 0

3 1 7 11 4 4

7
5 2 DD4

7
5
4 20

7
5

20
7

4 20

6.4.2. Assume that the gash has type D with the following shape.

4 2

03*
a

The unique applicable swap region is determined by the indicated label a.

a Name Rule Before After

0 DD5
7
5

4 2 0
5

4 2 0
7
5

4 0

1 DE
0* 2

1

1
4 0*

4 2 2 1

0 2
1

4 0
4 2 3 11 1

0 2

1
4 0

4 5 2 12 2

2 DD6
1
2

4 2 2
2

4 2 2
1
2

4 2

3 DF
2
1

1
6

4 2 2 0

2
1

6
4 2 03

2

1
6

4 2 02

6.4.3. Assume that the gash has type D with the following shape.

2 4
03* a

The unique applicable swap region is determined by the indicated label a.

a Name Rule Before After

1 DD7
2
1

2 4 2
1

2 4 2
2
1

2 2

7 DD8
5
7

2 4 0
7

2 4 0
5
7

2 0
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6.4.4. Assume that the gash has type D with the following shape.

03*

03*
a b

The unique applicable swap region is determined by the indicated labels a and b.

a b Name Rule Before After

0 0 DD9
0

0 0
0

0 0
0

0 0

0 3 DD10
2
1

2
1

0 0

2
1

1
0 03

2

2
1

0 05

1 0 DD11
3

1 0
3

1 0
3

1 0

1 1 DD12
0* 2

1

2
1 0*

1 1
0 2

1

1 0
1 3 11 1

0 2

2
1 0

1 7 14 4

5 2 DD13
0

5 2
0

5 2
0

5 2

6 2 DD14
3

6 2
3

6 2
3

6 2

6.4.5. Assume that the gash has type D with the following shape (given by the
solid black lines).

03*

03*
a b

The unique applicable swap region is determined by the indicated labels a and b.

a b Name Rule Before After

0 0 DD15
0

00
0

00
0

00

0 1 DD16
3

10
3

10
3

10

0 4 DD17
5
7
2 40

5
7

40
5

2 40

2 4 DD18
2
1
2 42

2
1

42
2

2 42

2 5 DD19
0

52
0

52
0

52

2 6 DD20
3

62
3

62
3

62
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6.5. Swap regions for a gash of type E.

6.5.1. Assume that the gash has type E and is located on the top border of the
puzzle. Let a be the labels of the left leg and let b be the label of the edge going
south-west from the right node of the left leg.

02*a
b

The table lists the possible values of a and b and the corresponding swap regions.

a b Name Rule Before After

1
4 0 EE1

1
4

1
4

0 0

1
4

4
0 07

1

1
4

0 03

1
4 2 EE2

1
4
1 21

1
4

21
1

1 21

3
5 2 EE3

3
5
1 20

3
5

20
3

1 20

6.5.2. Assume that the gash has type E with the following shape. Let a be the
label of the edge going south-east from the top node of the left leg, and let b be the
first non-zero label on the horizontal part of the gash. The following could be the
labels of the right leg of the gash.

1 2

0* 02*
a

b

The table lists the possible values of a and b and the corresponding swap regions.
In two cases the value of b is omitted, as it does not influence on the choice of swap
region.

a b Name Rule Before After

0 EE4
3
5

1 2 0
5

1 2 0
3
5

1 0

1 EE5
1
4

1 2 1
4

1 2 1
1
4

1 1

2 2 EE6
0* 2

2 0*
1 2 1 2

0 2

2 0
1 2 5 22 2

0 2

2 0
1 7 1 24 4

2 4
1 ED

0* 4
1

1
2 0*

1 2 2 4

0 4
1

2 0
1 2 5 42 2

0 4

1
2 0

1 3 2 41 1

2 5
3 EB

0* 5
3

3
2 0* 2

3

1 2 2
0 5

3

2 0 3
1 2 5 62 2 2

0 5

3
2 0 2

3

1 0 20 0 2

3 4
1 EF

4
1

1
6

1 2 2 0

4
1

6
1 2 03

4

1
6

1 2 01
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6.5.3. Assume that the gash has type E with the following shape.

2 1
02* a

The unique applicable swap region is determined by the indicated label a.

a Name Rule Before After

1 EE7
4
1

2 1 1
1

2 1 1
4
1

2 1

2 EE8
0* 2

2 0*
2 1 2 1

0 2

2 0
2 1 7 14 4

0 2

2 0
2 5 2 12 2

3 EE9
5
3

2 1 0
3

2 1 0
5
3

2 0

6.5.4. Assume that the gash has type E with the following shape.

02*

02*
a b

The unique applicable swap region is determined by the indicated labels a and b.

a b Name Rule Before After

0 0 EE10
0

0 0
0

0 0
0

0 0

0 3 EE11
4
1

4
1

0 0

4
1

1
0 03

4

4
1

0 07

0 5 EE12
2

0 5
2

0 5
2

0 5

3 1 EE13
0

3 1
0

3 1
0

3 1

3 6 EE14
2

3 6
2

3 6
2

3 6

6.5.5. Assume that the gash has type E with the following shape (given by the solid
black lines).

02*

02*
a b

The unique applicable swap region is determined by the indicated labels a and b.
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a b Name Rule Before After

0 0 EE15
0

00
0

00
0

00

0 1 EE16
5
3
2 10

5
3

10
5

2 10

1 1 EE17
4
1
2 11

4
1

11
4

2 11

1 3 EE18
0

31
0

31
0

31

5 0 EE19
2

05
2

05
2

05

6 3 EE20
2

36
2

36
2

36

6.6. Swap regions for a gash of type F.

6.6.1. Assume that the gash has type F and is located on the top border. Then the
unique applicable swap region is determined by the labels a of the left leg.

24*a

a Name Rule Before After

0
5 FF1

0
5
0 20

0
5

20
0

0 20

1
6 FF2

1
6
0 23

1
6

23
1

0 23

6.6.2. Assume that the gash has type F with the following shape. Let a and b be
the labels of the edges going south-east and east from the top node of the left leg.
Notice that b may be the labels of the right leg.

0 2

24*
a
b

The table lists the possible values of a and b together with the corresponding swap
regions.
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a b Name Rule Before After

0 5
0 FF3

5
0

0
5

0 2 2 0

5
0

5
0 2 00

5

0
5

0 2 00

1 5
0 FC

5
0

0
4

0 2 2 3

5
0

4
0 2 31

5

0
4

0 2 30

1 6
1 FE

6
1

1
4

0 2 2 1

6
1

4
0 2 11

6

1
4

0 2 13

1 4 FF4
4

4
0 2 0 2

4

4
0 2 21

4

4
0 0 27

2 5
0 FA

5
0

0
2

2
0

0 2 2

5
0

2 0
0 2 52 2

5

0
2

2
0

0 20 2

2 6
1 FD

6
1

1
2

0 2 2 4

6
1

2
0 2 42

6

1
2

0 2 43

2 2 FF6
2

2
0 2 0 2

2

2
0 2 22

2

2
0 0 25

3 6
1 FF7

6
1

1
6

0 2 2 0

6
1

6
0 2 03

6

1
6

0 2 03

6.6.3. Assume that the gash has type F of the following shape. Then the unique
applicable swap region is determined by the indicated label a.

2 0
24* a

a Name Rule Before After

0 FF8
5
0

2 0 0
0

2 0 0
5
0

2 0

1 FF9
6
1

2 0 3
1

2 0 3
6
1

2 3

2 FF10
2

2
2 0 2 0

2

2
2 0 05

2

2
2 2 02

4 FF11
4

4
2 0 2 0

4

4
2 0 07

4

4
2 2 01

6.7. Properties of the bijection. We finish this section by recording some conse-
quences of the analysis just carried out. Given any single-row puzzle P with a gash
on its top border, we let Φ(P ) denote the puzzle obtained by propagating the gash
to the bottom border, using the swap regions of this section. For any parallelogram
shaped puzzle P , let ρ(P ) denote the 180 degree rotation of P .

Proposition 6.1. The assignment Φ is a well defined map from the set of single-
row puzzles with a gash on the top border into the set of single-row puzzles with a
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gash on the bottom border. Furthermore, if P is any single-row puzzle with a gash
on the top border, then ρΦ ρΦ(P ) = P .

Proof. The well definedness of Φ follows by observing that the swap regions of
sections 6.1 through 6.6 cover all possible cases. For the second claim, suppose that
P is a gashed puzzle and P ′ is the result of applying a swap region R to P . An
inspection of the swap region tables shows that also the 180 degree rotation of R is
a swap region, and this swap region can be applied to ρ(P ′) to produce ρ(P ). If R
is called XY, where X and Y are distinct gash types, then the 180 degree rotation
of R is called YX. And if R is called XXm, where X is a gash type and m is an
integer, then the rotation of R is called XXm′ for a (possibly) different integer m′.
The proposition follows from this. �

Example 6.2. The 180 degree rotation of the first propagation in section 5 is
carried out with the swap regions FF2, FF4, and FA.

0 1
6 4 5

0

1 4 2 0
0 2 2 50 3 1 2 2 7→

0 1 4 5
0

1 4 2 0
0 0 2 2 50 3 1 2 2 7→

0 1 4 5
0

1 4 2 0
0 0 0 2 50 3 7 2 2 7→

0 1 4 5

1 4 0
2

2
0

0 0 0 20 3 7 0 2

The 180 degree rotation of the second propagation in section 5 is carried out
with the swap regions DD3, DD5, DD16, and DD12.

We record two additional consequences that are important for the general bijec-
tion for p ≥ 2. Let P be a gashed single-row puzzle with label c1 on the left border
and label c2 on the right border. We will say that P has border (c1,

u
u′ , v

′, c2) if

P has a horizontal gash on the top border corresponding to the relation u
1
−→ u′,

and the bottom border of P has labels v′. Similarly we will say that P has border
(c1, u,

v
v′ , c2) if P has a horizontal gash on the bottom border corresponding to the

relation v
1
−→ v′, and the top border of P has labels u.

Lemma 6.3. Let P be a single-row puzzle with a gash on its top border. Let
(c1,

u
u′ , v

′, c2) be the border of P , let (c1, u,
v
v′ , c2) be the border of Φ(P ), let (i, j)

be the index of u
1
−→ u′, and let (k, l) be the index of v

1
−→ v′. Then we have i ≤ l

and k < j. Moreover, if one of the relations u
1
−→ u′ or v

1
−→ v′ has type E, then

i− 1 ≤ k and j − 1 ≤ l.

Proof. The inequalities i ≤ l and k < j are equivalent to the existence of a non-
horizontal puzzle edge e, such that the top node of e separates the left and right
legs of the gash on P , and the bottom node of e separates the left and right legs
of the gash on Φ(P ). Assume at first that the propagation P 7→ Φ(P ) involves a
swap region R that moves both legs of the gash. In this case an inspection of the
propagation table shows that e may be taken as one of the interior edges of R.
Otherwise some intermediate puzzle in the propagation contains a non-horizontal
gash whose front edge is different from both of its legs. We may then take e to be

the front edge of this gash. If u
1
−→ u′ has type E, then the second claim follows

because none of the legs of a gash of type E are able to move more than one step
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to the left during a propagation. This can be seen by inspecting the swap regions

in section 6.5. Finally, if v
1
−→ v′ has type E, then the same argument applies to

ρΦ(P ). �

Definition 6.4. Let P be a single-row puzzle with border (c1,
u
u′ , v

′, c2), and let
(c1, u,

v
v′ , c2) be the border of Φ(P ). We will say that the propagation P 7→ Φ(P )

has type X–Y if the relation u
1
−→ u′ has type X and the relation v

1
−→ v′ has type Y.

Given a small triangle τ of P , the top part of τ is the intersection of τ with the top
border of P , and the bottom part of τ is the intersection of τ with the bottom border
of P . One of these ‘parts’ of τ is a point, and the other is a small horizontal line
segment. We will say that τ is an interior triangle of the propagation P 7→ Φ(P )
if the top part of τ is located between the left and right legs of the gash on P , and
the bottom part of τ is located between the left and right legs of the gash on Φ(P ).

Lemma 6.5. Let P be a single-row puzzle with a horizontal gash on the top bor-
der, and assume that the propagation P 7→ Φ(P ) has type E–E. Then all interior
triangles are unchanged by this propagation and come from the list:

0
0 0

2
0 5

0
3 1

2
3 6

0
00

2
05

0
31

2
36

Proof. This follows by inspection of the swap regions in section 6.5. The triangles
on the list correspond to the swap regions EE10, EE12, EE13, EE14, EE15, EE19,
EE18, and EE20. �

7. The general bijection

Let P be a single-row puzzle with border (c1, u
′, v′, c2) and let u be a label string

such that u
p
−→ u′ for some p. We define a new single-row puzzle Φu(P ) as follows.

If u = u′, then set Φu(P ) = P . If p = 1 and u
1
−→ u′, then let P ′ be the puzzle

obtained from P by changing the border to (c1,
u
u′ , v

′, c2), let (c1, u,
v
v′ , c2) be the

border of Φ(P ′), and let Φu(P ) be the puzzle obtained from Φ(P ′) by changing this

border to (c1, u, v, c2). Otherwise let u = u0 1
−→ u1 1

−→ · · ·
1
−→ up = u′ be the unique

right-increasing Pieri chain from u to u′. By induction on p we may assume that

Φu1

(P ) has already been defined. We then set Φu(P ) = Φu(Φu1

(P )).

Example 7.1. Let u = (1, 0, 2, 4, 2, 5), u′ = (4, 2, 0, 6, 2, 0), and v′ = (2, 5, 1, 2, 2, 0).
We list the intermediate puzzles occurring when the map Φu is applied to a puzzle
with border (1, u′, v′, 2). For each step we have colored the union of the swap regions
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used to change the puzzle.

4 2 0 6 2 0

2 5 1 2 2 0
2 2 0 2 2 51 2 0 3 2 2 2 7→

4 2 0 1 2 5

2 5 1 2 0 2
2 2 0 0 0 21 2 0 3 5 0 2 7→

1 2 0 4 2 5

2 3 4 2 0 2
1 1 0 0 0 21 4 0 7 5 0 2 7→

1 0 2 4 2 5

3 2 4 2 0 2
1 0 0 0 0 21 0 5 7 5 0 2

Lemma 7.2. Let ũ be any label string contained in the unique right-increasing
Pieri chain from u to u′. Then we have Φu(P ) = Φu(Φũ(P )).

Proof. Let u = u0 1
−→ u1 1

−→ · · ·
p
−→ up = u′ be the right-increasing Pieri chain. It

follows from the definition that Φu(P ) = Φu(Φu1

(P )). If ũ 6= u, then ũ is contained
in the unique right-increasing Pieri chain from u1 to u′, so by induction on p we

obtain Φu(Φu1

(P )) = Φu(Φu1

(Φũ(P ))) = Φu(Φũ(P )), as required. �

Lemma 7.3. Let P be a single-row puzzle with border (c1, u
p, vp, c2), and let u0 1

−→

u1 1
−→ · · ·

1
−→ up be a right-increasing Pieri chain. Let (c1, u

t, vt, c2) be the border of

Φut

(P ) for each t ∈ [0, p]. Then v0
1
−→ v1

1
−→ · · ·

1
−→ vp is a Pieri chain.

Before we prove Lemma 7.3, we emphasize that the produced Pieri chain v0
1
−→

v1
1
−→ · · ·

1
−→ vp is not necessarily right increasing; when this occurs, we say that the

propagation paths cross. In addition, the lemma is false without the assumption

that the Pieri chain u0 1
−→ u1 1

−→ · · ·
1
−→ up is right increasing. These points are

essential to how propagation paths are allowed to cross each other in a controlled
way.

Proof. Since Φut−1

(P ) = Φut−1

(Φut

(P )) by Lemma 7.2, it follows from the defini-

tion of Φ in section 6 that vt−1 1
−→ vt for each t ∈ [1, p]. Let (it, jt) be the index

of ut−1 1
−→ ut, and let (kt, lt) be the index of vt−1 1

−→ vt for each t. Then we have
j1 < j2 < · · · < jp by assumption, and Lemma 6.3 implies that it ≤ lt and kt < jt
for each t. Let 1 ≤ s < t ≤ p; we must show that ks < lt. If jt−1 ≤ it, then this is
true because ks < js ≤ jt−1 ≤ it ≤ lt. Otherwise it follows from Lemma 4.5 that

ut−1 1
−→ ut has type E, so Lemma 6.3 implies that jt−1 ≤ lt. In this case we obtain

ks < js ≤ jt − 1 ≤ lt, as required. �

Corollary 7.4. Let P be a single-row puzzle with border (c1, u
′, v′, c2) such that

u
p
−→ u′ for some u and p, and let (c1, u, v, c2) be the border of Φu(P ). Then v

p
−→ v′.

Proof. This follows from Lemma 7.3. �
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Notice that if we turn the last puzzle in Example 7.1 upside-down and apply

Φv′∨

, then the sequence of propagations in the example will be undone in reverse
order. However, when the propagation paths cross, we get a slightly different
propagation order. This occurs when a propagation of type A–A is carried out
inside a propagation of type E–E.

Example 7.5. We show the steps involved in applying Φu to a single-row puzzle
with border (0, u′, v′, 0), where u = (3, 0, 0, 2, 2, 4), u′ = (5, 0, 2, 2, 0, 1), and v′ = u∨.
The first step is a propagation of type E–E, while the second and third steps are
propagations of type A–A.

5 0 2 2 0 1

4 2 2 0 0 3
2 3 3 3 3 10 1 6 6 1 1 0 7→

3 0 2 2 0 4

1 2 2 0 0 5
1 3 3 3 3 20 1 6 6 1 1 0 7→

3 0 2 0 2 4

1 2 0 2 0 5
1 3 3 3 3 20 1 6 1 6 1 0 7→

3 0 0 2 2 4

1 0 2 2 0 5
1 3 3 3 3 20 1 1 6 6 1 0

Notice that the resulting puzzle is equal to the 180 degree rotation of the initial
puzzle P , so we have ρΦuρΦu(P ) = P . However, the second application of Φu does
not undo the propagations of the first application of Φu in the expected reverse
order. This is the main issue in the proof of Proposition 7.6 below.

Let Q be a single-row puzzle with border (c1, u, v, c2) such that v
p
−→ v′ for some

v′ and p. Then we define Φv′(Q) = ρΦv′∨

ρ(Q). Lemma 7.3 implies that this puzzle

has border (c1, u
′, v′, c2) for a label string u′ with u

p
−→ u′.

Proposition 7.6. Let P be a single-row puzzle with border (c1, u
′, v′, c2) and let u

be a label string such that u
p
−→ u′ for some p. Then we have Φv′(Φu(P )) = P .

Proof. We proceed by induction on p. The statement is clear if p = 0, and for

p = 1 it follows from Proposition 6.1. Assume that p ≥ 2 and let u = u0 1
−→

u1 1
−→ · · ·

1
−→ up = u′ be the unique right-increasing Pieri chain. For each t ∈ [0, p]

we set Pt = Φut

(P ), and we let (c1, u
t, vt, c2) be the border of this puzzle. Then

v = v0
1
−→ v1

1
−→ · · ·

1
−→ vp = v′ is a Pieri chain by Lemma 7.3. Let (it, jt) be the

index of ut−1 1
−→ ut and let (kt, lt) be the index of vt−1 1

−→ vt.
Assume first that kp = max{k1, . . . , kp}. Then it follows from Proposition 4.7(b)

and Lemma 7.2 that Φv′(P0) = Φv′(Φvp−1(P0)). Since P0 = Φu(Pp−1), we ob-
tain from the induction hypothesis that Φvp−1(P0) = Pp−1. We deduce that
Φv′(Φu(P )) = Φv′(P0) = Φv′(Φvp−1(P0)) = Φv′(Pp−1) = P , as required.

Otherwise we have kp < ks for some s ≤ p− 1. Since {vt} is a Pieri chain, this

implies that kp + 1 ≤ ks < min(lp−1, lp). It follows that the relation vp−1 1
−→ vp
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is not of type A, and Lemma 4.5 implies that kp < kp−1 < lp−1 < lp, the relation

vp−2 1
−→ vp−1 has type A, and vp−1 1

−→ vp has type E. Lemma 6.3 now implies
that ip ≤ kp + 1 ≤ kp−1 < jp−1, so another application of Lemma 4.5 shows that

ip < ip−1 < jp−1 < jp, the relation up−2 1
−→ up−1 has type A, and the relation

up−1 1
−→ up has type E. Notice also that kt ≤ lp−1− 1 = kp−1 for each t ∈ [1, p− 1],

so kp−1 = max{k1, . . . , kp}.
The propagation P = Pp 7→ Pp−1 is carried out by first changing the border of Pp

to (c1,
up−1

up , vp, c2), then applying Φ, and finally changing the border of the resulting

puzzle to (c1, u
p−1, vp−1, c2). This application of Φ is therefore a propagation of

type E–E. Furthermore, the step Pp−1 7→ Pp−2 is carried out by changing the border

of Pp−1 to (c1,
up−2

up−1 , v
p−1, c2), applying Φ, and changing the border of the result to

(c1, u
p−2, vp−2, c2). Here the application of Φ is a propagation of type A–A, which

can happen only by applying a single swap region R of type AA1, AA2, AA3,
or AA4. Notice that all small triangles of R (before the swap) must be interior
triangles to the propagation Pp 7→ Pp−1 of type E–E. We therefore deduce from
Lemma 6.5 that R must have type AA1 or AA4. Since the triangles after a swap of
type AA1 or AA4 are also on the list of Lemma 6.5, the E–E and A–A propagations
can be carried out in the opposite order with the same result.

More precisely, let ũ be the unique label string described in Lemma 4.5, so that

up−2 1
−→ ũ

1
−→ u′ is a Pieri chain, up−2 1

−→ ũ has type E, and ũ
1
−→ u′ has type A.

Similarly, let ṽ be the unique label string such that vp−2 1
−→ ṽ

1
−→ v′ is a Pieri chain,

vp−2 1
−→ ṽ has type E, and ṽ

1
−→ v′ has type A. Now set P̃ = Φũ(P ). Then P̃ has

border (c1, ũ, ṽ, c2) and Φup−2

(P̃ ) = Pp−2.

Using that u0 1
−→ · · ·

1
−→ up−2 1

−→ ũ is a right-increasing Pieri chain, we obtain

P0 = Φu(Pp−2) = Φu(Φup−2

(P̃ )) = Φu(P̃ ). Since v0
1
−→ · · ·

1
−→ vp−2 1

−→ ṽ
1
−→ v′

is a Pieri chain and ṽ
1
−→ v′ has index (kp−1, lp−1) with kk−1 = max{k1, . . . , kp},

we obtain from Proposition 4.7(b) and Lemma 7.2 that Φv′(P0) = Φv′(Φṽ(P0)).

Finally, since the induction hypothesis implies that Φṽ(P0) = Φṽ(Φ
u(P̃ )) = P̃ , we

obtain Φv′(Φu(P )) = Φv′(P0) = Φv′(Φṽ(P0)) = Φv′(P̃ ) = P , as required. �

Proof of Proposition 2.2. The identity (3) follows from Corollary 3.2. Let u, v′, w1,
and w2 be 012-strings and let p ∈ N. We will say that a parallelogram shaped puzzle
has border (w1, u, v

′, w2) if u gives the labels of the top border, v′ gives the labels
of the bottom border, w1 gives the labels of the left border, and w2 gives the labels
of the right border, all in north-west to south-east order. Recall from section 3
that to prove the identity (4) it suffices to construct a bijection between the set

of parallelogram shaped puzzles with border (w1, u
′, v′, w2) such that u

p
−→ u′, and

the set of parallelogram shaped puzzles with border (w1, u, v, w2) such that v
p
−→ v′.

We do this by modifying one row at the time.

w1

u′

w2

v′

←→ w1

u

w2

v
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Given a parallelogram shaped puzzle P ′ with border (w1, u
′, v′, w2), let n be the

number of rows in this puzzle, let P ′
i be the subpuzzle in the i-th row for 1 ≤ i ≤ n

(counted from top to bottom), and let (ci, u
′i−1

, u′i, c′i) be the border of P ′
i . Then

u′0 = u′ and u′n = v′. Set u0 = u and P1 = Φu0

(P ′
1). Assume inductively that

P1, . . . , Pi have already been defined. Then let (ci, u
i−1, ui, c′i) be the border of

Pi and set Pi+1 = Φui

(P ′
i+1). Finally, let Φu(P ′) be the union of the rows Pi for

i ∈ [1, n], and let v be the labels of the bottom border of this puzzle. Then Φu(P ′)

is a valid puzzle with border (w1, u, v, w2) such that v
p
−→ v′. Finally, it follows from

Proposition 7.6 that ρΦv′∨

ρΦu(P ′) = P ′, which implies that the map P ′ 7→ Φu(P ′)
is a bijection. �

Example 7.7. Here is an example of the bijection in the proof of Proposition 2.2
in a case where two propagation paths cross each other.

1
2 0 2 2

1

4 2 0 1

2 2 0 1

2 3 3 12 1 6 1 1

2 2 5 41 2 2 2 2
7→

1
2 0 2

1 2

4 0
2

2
0 1

2 2 0 1

2 3 1 12 1 1 4 1

2 2 5 41 2 2 2 2
7→

1 0 2 2

1
4

0
2

2
0

4
1

2 2 0 1

4 5 2 22 2 2 2 1

2 2 5 41 2 2 2 2
7→

1 0 2 2

1 0
2

2
0 4

2 1
2 0 2

1

4 5 2 22 2 2 2 1

1 1 3 21 4 1 1 2
7→

1 0 2 2

1 0 2 4

1
2 2 0 2

1

4 5 2 22 2 2 2 1

1 3 3 21 1 6 1 2

Here is what happens if the propagations are carried out one after another: that
is, each gash is allowed to propagate to the bottom of the puzzle before the next
propagation begins.

1
2 0 2 2

1

4 2 0 1

2 2 0 1

2 3 3 12 1 6 1 1

2 2 5 41 2 2 2 2
7→

1
2 0 2

1 2

4 0
2

2
0 1

2 2 0 1

2 3 1 12 1 1 4 1

2 2 5 41 2 2 2 2
7→

1
2 0 2

1 2

4 0 2 1

2 0
2

2
0 1

2 3 1 12 1 1 4 1

2 5 2 41 2 2 2 2
7→

1 0 2 2

1
4 0 2 4

1

2 0
2

2
0 1

4 5 2 22 2 2 2 1

2 5 2 41 2 2 2 2
7→
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1 0 2 2

1 0 2 4

2 0
2

1
0

2
1

4 5 2 22 2 2 2 1

1 7 1 21 4 4 1 2

Notice that the resulting 012-strings v = (2, 0, 1, 2) and v′ = (2, 2, 0, 1) on the

bottom border do not satisfy v
2
−→ v′. This illustrates why several propagations

must be handled simultaneously and in the correct sequence, in order to obtain a
proof of Proposition 2.2.

8. A quantum Littlewood-Richardson rule

Let Y = G(m,n) denote the Grassmannian parametrizing m-dimensional com-
plex linear subspaces of Cn. The Schubert varieties Yu in Y and their classes [Yu] in
H∗(Y,Z) may be indexed by 02-strings u = (u1, . . . , un) with m zeroes and n−m
twos. The codimension of Yu in Y is equal to the number of inversions ℓ(u).

Let u, v, and w be three 02-strings as above and fix a nonnegative integer d such
that ℓ(u) + ℓ(v) + ℓ(w) = m(n −m) + nd. The three-point, genus zero Gromov-
Witten invariant 〈[Yu], [Yv], [Yw]〉d may be defined as the number of rational maps
f : P1 → Y of degree d such that f(0) ∈ Yu, f(1) ∈ Yv, and f(∞) ∈ Yw, whenever
the Schubert varieties Yu, Yv, and Yw are taken to be in general position. When
d = 0, we have that 〈[Yu], [Yv], [Yw]〉0 is equal to the triple intersection number∫
Y
[Yu] · [Yv] · [Yw], which is a Schubert structure constant in the cohomology of

the Grassmannian Y , and given by the classical Littlewood-Richardson rule. In
general, the invariants 〈[Yu], [Yv], [Yw]〉d are Schubert structure constants in the
small quantum cohomology ring of Y , which is a q-deformation of H∗(Y,Z).

If d ≤ min(m,n−m), define a 012-string ud by changing the first d twos and the
last d zeroes of u to ones. For example, if Y = G(4, 10), d = 2, and u = 2022020202,
then ud = 1012021212. We similarly define the 012-strings vd and wd. Our main
theorem may now be used to establish the following conjecture of Buch, Kresch,
and Tamvakis from [2, section 2.4].

Theorem 2 (Quantum Littlewood-Richardson Rule). Let Yu, Yv, and Yw be Schu-
bert varieties in G(m,n), and suppose that ℓ(u) + ℓ(v) + ℓ(w) = m(n −m) + nd.
The Gromov-Witten invariant 〈[Yu], [Yv], [Yw]〉d is equal to the number of triangular
puzzles for which ud, vd, and wd are the labels on the left, right, and bottom sides,
in clockwise order, when d ≤ min(m,n−m), and is zero otherwise.

Proof. The 012-strings ud, vd, and wd index Schubert varieties Xud
, Xvd

, and Xwd

in the two-step flag variety Fl(m − d,m + d;n). According to [2, Corollary 1] we
have

〈[Yu], [Yv], [Yw]〉d =

∫

Fl(m−d,m+d;n)

[Xud
] · [Xvd

] · [Xwd
].

The desired result follows by applying Theorem 1. �
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