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Let G be a semisimple complex algebraic group and P a parabolic subgroup of G.
The homogeneous space X = G/P is a projective complex manifold. My aim in
this lecture is to survey what is known about the (small) quantum cohomology ring
of X. Here is a brief historical introduction, with no claim of completeness. About
15 years ago, ideas from string theory and mirror symmetry led physicists to make
some startling predictions in enumerative algebraic geometry (see e.g. [18, 19]).
This involved the notion of Gromov-Witten invariants, which are certain natural
intersection numbers on the moduli space of degree d holomorphic maps from a
compact complex curve C of genus g (with n marked points) to X.

When the genus g is arbitrary, computing these invariants is a rather difficult
problem. The case when X is a point was a conjecture of Witten, proved by
Kontsevich. Later, Okounkov and Pandharipande examined the case when X =
P1. The genus zero theory led to the so called big quantum cohomology ring,
and to work on mirror symmetry by Givental, Yau, and their collaborators. I will
specialize further to the case of n = 3 marked points, when we obtain the small
quantum cohomology ring QH∗(X). Although much has been understood here,
still many open questions remain.

1. Cohomology of G/B and G/P

We begin with the Bruhat decomposition G =
⋃

w∈W BwB, where B is a Borel
subgroup of G, and W is the Weyl group. The Schubert cells in X = G/B are

the orbits of B on X; their closures Yw = BwB/B are the Schubert varieties. For
each w ∈ W , let w∨ = w0w and Xw = Yw∨ , so that the complex codimension of
Xw is given by the length `(w). Using Poincaré duality, we obtain the Schubert
classes σw = [Xw] ∈ H2`(w)(X), which form a free Z-basis of H∗(X). This gives
the additive structure of the cohomology ring.

For the multiplicative structure, if the group W is generated by the simple
reflections si for 1 ≤ i ≤ r, we obtain the Schubert divisor classes σsi

∈ H2(X)
which generate the ring H∗(X). Moreover, we have Borel’s presentation [2]

H∗(G/B, Q) = Sym(Λ(B))/Sym(Λ(B))W
>0

where Λ(B) denotes the character group of B, and Sym(Λ(B))W
>0 is the ideal

generated by W -invariants of positive degree in the symmetric algebra of Λ(B).
For any parabolic subgroup P , if WP is the corresponding subgroup of the Weyl

group W , we have H∗(G/P ) =
⊕

Z σ[w], the sum over all cosets [w] ∈ W/WP .
The corresponding Borel presentation has the form

H∗(G/P, Q) = Sym(Λ(B))WP /Sym(Λ(B))W
>0.
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2. Quantum cohomology of G/B and G/P

Let r be the rank of H2(G/P ), and q = (q1, . . . , qr) a finite set of formal
variables. The ring QH∗(X) is a graded Z[q]-algebra which is isomorphic to
H∗(X) ⊗Z Z[q] as a module over Z[q]. The degree of each variable qi is given
by deg(qi) =

∫
X

σs∨

i
· c1(TX). Note that our grading of cohomology classes will

be with respect to their complex codimension.
A holomorphic map f : P1 → X has degree d = (d1, . . . , dr) if f∗[P

1] =
∑

i diσs∨

i

in H2(X). The quantum product in QH∗(X) is defined by

(1) σu σv =
∑

〈σu, σv, σw∨〉d σw qd

where the sum is over d ≥ 0 and elements w ∈ W such that `(w) = `(u) + `(v) −∑
di deg(qi). The nonnegative integer 〈σu, σv, σw∨〉d is a 3-point, genus 0 Gromov-

Witten invariant, and can be defined enumeratively as the number of degree d

holomorphic maps f : P1 → X such that f(0) ∈ X̃u, f(1) ∈ X̃v, f(∞) ∈ X̃w∨ ,

where the tilde in X̃u, X̃v, X̃w∨ means that the respective Schubert varieties are
taken to be in general position. In most cases, counting the number of such maps
f is equivalent to counting their images, which are degree d rational curves in X.

Alternatively, one may realize 〈σu, σv, σw∨〉d as

〈σu, σv, σw∨〉d =

∫

M0,3(X,d)

ev∗
1(σu) ev∗

2(σv) ev∗
3(σw∨),

an intersection number on Kontsevich’s moduli space M 0,3(X, d) of stable maps.
A stable map is a degree d morphism f : (C, p1, p2, p3) → X, where C is a tree of
P1’s with three marked smooth points p1, p2, and p3, and the stability condition
is such that the map f admits no automorphisms. The evaluation maps evi :
M0,3(X, d) → X are given by evi(f) = f(pi).

One observes that each degree zero Gromov-Witten invariant

〈σu, σv, σw∨〉0 = # X̃u ∩ X̃v ∩ X̃w∨ =

∫

X

σu σv σw∨

is a classical structure constant in the cohomology ring of X, showing that QH∗(X)
is a deformation of H∗(X). The surprising point is that the product (1) is asso-
ciative; see [9] for a proof of this. We will be interested in extending the classical
understanding of Schubert calculus on G/P to the quantum cohomology ring.

3. The Grassmannian G(m,N)

One of the first spaces where this story was worked out was the Grassmannian
X = G(m,N) = SLN/Pm of m dimensional linear subspaces of CN . Here the Weyl
groups W = SN , WPm

= Sm × Sn, where n = N − m, and there is a bijection
between the coset space W/WP and the set of partitions λ = (λ1, . . . , λm) whose
Young diagram is contained in an m × n rectangle R(m,n). The latter objects
will index the Schubert classes in X. Since H2(X) has rank one, there is only one
deformation parameter q, of degree N in QH∗(X).
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3.1. Presentation [17, Siebert and Tian]. There is a universal short exact se-
quence of vector bundles

0 → S → E → Q → 0

over G(m,N), with S the tautological rank m subbundle of the trivial vector
bundle E, and Q = E/S the rank n quotient bundle. Then

QH∗(G(m,N)) = Z[c(S), c(Q), q]/ 〈c(S)c(Q) = 1 + (−1)mq〉

= Z[x1, . . . , xm, y1, . . . , yn, q]Sm×Sn/ 〈er(x, y) = 0, r < N ; eN (x, y) = (−1)mq〉 .

The new relation cm(S∗)cn(Q) = q is equivalent to σ1mσn = q, and contains the
enumerative geometric statement that 〈σ1m , σn, [pt]〉1 = 1. This latter can be
checked directly from geometry, or deduced from the Pieri rule which follows.

3.2. Quantum Pieri rule [1, Bertram]. The special Schubert classes σp = cp(Q)
for 1 ≤ p ≤ n generate the ring QH∗(X). Moreover, we have

σp σλ =
∑

µ⊂R(m,n)

σµ +
∑

µ⊂R(m+1,n)

σbµ q,

where both sums are over µ obtained from λ by adding p boxes, no two in a
column, and µ̂ is obtained from µ by removing a hook of length N from its rim.
This means that the only µ ⊂ R(m + 1, n) that contribute to the second sum
are those which include the northeast-most and southwest-most corners in their
diagram. For example, in X = G(3, 8), we have σ3 σ422 = σ542 + σ21 q + σ111 q.

3.3. Quantum Littlewood-Richardson numbers. These are the Gromov-Witten
invariants in the equation

(2) σλ σµ =
∑

d,ν

Cν,d
λ,µ σν qd

in QH∗(G(m,N)). The quantum Pieri rule gives an algorithm to compute the

quantum Littlewood-Richardson numbers Cν,d
λ,µ, however not a positive combina-

torial rule extending the classical one. A puzzle based conjectural rule for these
numbers was given by Buch, Kresch, and the author [4], and recently a ‘geometric’
and positive combinatorial rule was proved by Coskun.

As one of the many combinatorial offshoots of this theory, I mention a clever

reformulation of the algorithm determining the numbers Cν,d
λ,µ due to Postnikov

[15]. When d = 0, if sµ(x1, . . . , xm) denotes the Schur polynomial in m variables,
and we alter the summation in (2) to be over µ instead of ν, then we get

∑

µ

Cν,0
λ,µ sµ(x1, . . . , xm) =

∑

T on ν/λ

xT

where the second sum is over all semistandard Young tableaux T on the skew
shape ν/λ with entries no greater than m. For each fixed d ≥ 0, Postnikov defines
a toric shape ν/d/λ which is a subset of the torus T (m,n), the rectangle R(m,n)
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with opposite sides identified; the role of d in the description of the shape is a shift
by d squares in the southeast direction. One then shows that

∑

µ

Cν,d
λ,µ sµ(x1, . . . , xm) =

∑

T on ν/d/λ

xT ,

the second sum over all Young tableaux on the toric shape ν/d/λ. One nice ap-
plication of this result is determining exactly which powers qd occur in a quantum
product σλ σµ with a non-zero coefficient.

4. Flag varieties for SLn

We set X = SLn/B to be the complex manifold parametrizing complete flags
of linear subspaces 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = Cn, with dim Ei = i. We then
have QH∗(X) =

⊕
Z σw qd, the sum over permutations w ∈ Sn and multidegrees

d, while qd = qd1

1 · · · q
dn−1

n−1 , with each variable qi of degree 2.

4.1. Presentation [11, Givental and Kim]. Let Ei also denote the corresponding
tautological vector bundle over X, and xi = −c1(Ei/Ei−1). The Borel presen-
tation of H∗(X) is a quotient of Z[x1, . . . , xn] by the ideal generated by the ele-
mentary symmetric polynomials ei(x1, . . . , xn) for 1 ≤ i ≤ n. For the quantum
cohomology ring, we have

QH∗(X) = Z[x1, . . . , xn, q1, . . . , qn−1]/〈Ei(x, q) = 0, 1 ≤ i ≤ n〉

where the quantum elementary symmetric polynomials Ei(x, q) are the coefficients
of the characteristic polynomial

det(A + tIn) =

n∑

i=0

Ei(x, q)tn−i

of the matrix

A =




x1 q1 0 · · · 0
−1 x2 q2 · · · 0
0 −1 x3 · · · 0
...

...
...

. . .
...

0 0 0 · · · xn




.

4.2. Quantum Monk/Chevalley formula [8, Fomin, Gelfand, and Postnikov].
This is a formula for the quantum product σsi

σw. It was extended by Peterson
to any G/B; see section 5.2.

4.3. Quantum cohomology of SLn/P . Ciocan-Fontanine [7] obtained analogues
of the above results for any homogeneous space for SLn. We remark that quantum
cohomology is not functorial, and so one has to work on each parabolic subgroup
P separately. The conclusion of this discussion is that the quantum cohomology of
SLn flag varieties is fairly well understood; one can also recognize each Schubert
class σw in the presentation of QH∗(X) using quantum Schubert polynomials [8].
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5. Lie types other than A

5.1. General G/B. A presentation of QH∗(G/B) for general G was given by
Kim[12]. It is notable because the relations come from the integrals of motion of
the Toda lattice associated to the Langlands dual group G∨. In his 1997 MIT
lectures, D. Peterson announced a presentation of QH∗(G/P ) for any parabolic
subgroup P of G. This result remains unpublished; moreover, it is difficult to relate
Peterson’s presentation to the Borel presentation of H∗(G/P ) given earlier. For
work in this direction when G = SLn, see Rietsch [16], which includes a connection
with the theory of total positivity. Recently, Cheong [6] has made a corresponding
study of the Grassmannians LG and OG of maximal isotropic subspaces.

5.2. Peterson’s quantum Chevalley formula [10]. Let R be the root system
for G and R+ the positive roots. For α ∈ R+ we denote by sα the corresponding
reflection in W . To any root α there corresponds the coroot α∨ = 2α/〈α, α〉 in
the Cartan subalgebra of Lie(G). For any positive coroot α∨ with α∨ = d1α

∨
1 +

· · · + drα
∨
r , define |α∨| =

∑
i di and qα∨

=
∏

i qdi

i . Then we have

σsi
· σw =

∑

`(wsα)=`(w)+1

〈ωi, α
∨〉σwsα

+
∑

`(wsα)=`(w)−2|α∨|+1

〈ωi, α
∨〉σwsα

qα∨

in QH∗(G/B), where the sums are over α ∈ R+ satisfying the indicated conditions,
and ωi is the fundamental weight corresponding to si. Using this result, one can
recursively compute the Gromov-Witten invariants on any G/B space.

5.3. Peterson’s comparison theorem [20]. Every Gromov-Witten invariant
〈σu, σv, σw〉d on G/P is equal to a corresponding number 〈σu′ , σv′ , σw′〉d′ on G/B.
The exact relationship between the indices is explicit, but not so easy to describe;
see [20] for further details and a complete proof. Combining this with the previous
result allows one to compute any Gromov-Witten invariant on any G/P space.

5.4. Grassmannians in other Lie types [13, 14, Kresch and T.]. Let X =
Sp2n/Pn be the Grassmannian LG(n, 2n) parametrizing Lagrangian subspaces of
C2n equipped with a symplectic form. The Schubert varieties on LG are indexed
by strict partitions λ with λ1 ≤ n, and the degree of q this time is n + 1.

5.4.1. Presentation of QH∗(LG). If 0 → S → E → Q → 0 denotes the tautological
sequence of vector bundles over LG, then we may identify Q with S∗, and the
special Schubert classes σp = cp(S

∗) again generate the ring QH∗(LG). The
Whitney sum formula ct(S)ct(S

∗) = 1 gives the classical relations

(1 − σ1t + σ2t
2 − · · · )(1 + σ1t + σ2t

2 + · · · ) = 1

or equivalently σ2
r + 2

∑n−r
i=1 (−1)iσr+iσr−i = 0 for 1 ≤ r ≤ n. For the quantum

ring, we have the presentation

QH∗(LG) = Z[σ1, . . . , σn, q]/〈σ2
r + 2

n−r∑

i=1

(−1)iσr+iσr−i = (−1)n−rσ2r−n−1q〉.
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Observe that if we identify q with 2σn+1, the above equations become classical
relations in the cohomology of LG(n + 1, 2n + 2). Looking for the enumerative
geometry which lies behind this algebraic fact, we find that

〈σλ, σµ, σν〉1 =

∫

IG(n−1,2n)

σ
(1)
λ σ(1)

µ σ(1)
ν =

1

2

∫

LG(n+1,2n+2)

σλ σµ σν .

The first equality is an example of a “quantum = classical” result; here the isotropic
Grassmannian IG(n − 1, 2n) = Sp2n/Pn−1 is the parameter space of lines on

LG(n, 2n), and σ
(1)
λ , σ

(1)
µ , σ

(1)
ν are certain Schubert classes in H∗(IG).

5.4.2. Symmetries of Gromov-Witten invariants. Kresch and the author [14] also
studied the quantum cohomology of the maximal orthogonal Grassmannians OG =
OG(n, 2n + 1) = SO2n+1/Pn. There are quantum Pieri rules for LG and OG
which extend the known ones in classical cohomology. Using them, one shows
that the Gromov-Witten invariants on these spaces enjoy a (Z/2Z)3-symmetry,
which implies that the tables of Gromov-Witten invariants for LG(n − 1, 2n − 2)
and OG(n, 2n+1) coincide, after applying an involution. Similar symmetries were
observed by Postnikov [15] and others for type A Grassmannians; recently, Chaput,
Manivel, and Perrin have extended them to all hermitian symmetric spaces.

The original proofs of all the above results relied on intersection theory on
M0,3(X, d) or Quot schemes. A technical breakthrough was found by Buch [3];
his ‘Ker/Span’ ideas greatly simplified most of the arguments involved. Using this
approach, Buch, Kresch, and the author have made a corresponding analysis of
QH∗(G/P ) when G is a classical group and P any maximal parabolic subgroup.

6. “Quantum = Classical” results

The title refers to theorems which equate any Gromov-Witten invariant on a
hermitian symmetric Grassmannian with a classical triple intersection number on
a related homogeneous space. These results were discovered in joint work of the
author with Buch and Kresch [4]. More recently, Chaput, Manivel, and Perrin [5]
have presented the theory in a uniform framework which includes the exceptional
symmetric spaces E6/P6 and E7/P7. There follows a summary of this story.

Assume that X = G/P is a hermitian symmetric space. For x, y ∈ X, let δ(x, y)
be the minimum d ≥ 0 such that there exists a rational curve of degree d passing
through the points x and y. The invariant δ(x, y) parametrizes the G orbits in

X × X. If δ(x, y) = d, then define Z(x, y) =
⋃

Cx,y, where the union is over all
rational curves Cx,y of degree d through the points x and y. Then Z(x, y) is a
homogeneous Schubert variety Xwd

in X. Now G acts transitively on the set of
translates {gXwd

| g ∈ G}; therefore the variety Yd parametrizing all such Xwd

in X is a homogeneous space G/Pd for some (generally non maximal) parabolic
subgroup Pd of G. To each Schubert class σλ in H∗(X) there corresponds naturally

a Schubert class σ
(d)
λ in H∗(Yd). Then we have

〈σλ, σµ, σν〉d =

∫

Yd

σ
(d)
λ σ(d)

µ σ(d)
ν .
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