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1. Introduction

The irreducible polynomial representations of the general linear group GLn(C)
are parametrized by integer partitions λ with at most n parts. Given any two such
representations V λ and V µ, one has a decomposition of the tensor product

(1) V λ ⊗ V µ =
∑

ν

cνλµ V
ν

into irreducible representations V ν of GLn.
Let G(m,n) denote the Grassmannian of complex m-dimensional linear sub-

spaces of Cm+n. The cohomology ring of G(m,n) has a natural geometric basis of
Schubert classes σλ, and there is a cup product decomposition

(2) σλ · σµ =
∑

ν

cνλµ σν .

The structure constants cνλµ determine the classical Schubert calculus on G(m,n).

It has been known for some time that the integers cνλµ in formulas (1) and

(2) coincide, as long as the meaningless Schubert classes in (2) are interpreted as
zero. Following the work of Giambelli [G1] [G2], this is proved formally by relating
both products to the multiplication of Schur S-polynomials; a precise argument
along these lines was given by Lesieur [Les]. It is natural to ask for a more direct,
conceptual explanation of this fact. This question has appeared every so often in
print; some recent examples are [F2, §6.2] and [Len, §1].

Our aim here is to describe a direct and natural connection between the repre-
sentation theory of GLn and the Schubert calculus, which goes via the Chern-Weil
theory of characteristic classes. Indeed, since the Grassmannian is a universal car-
rier for the Chern classes of principal GLn-bundles, it is not so surprising that the
cohomology ring of G(m,n) is related to the representation ring of GLn. From this
point of view, we can also understand why a result of this sort fails to hold for other
types of Lie groups: what makes GLn special is the fact that it sits naturally as a
dense open subset of its own Lie algebra (see Sec. 2). The key observation is that
the Chern-Weil homomorphism extends to a ring homomorphism from the (polyno-
mial) representation ring R+(GLn) to H

∗(G(m,n)), which sends the natural basis
elements of the first ring to the Schubert classes.

The relation between Schubert calculus and the multiplication of Schur poly-
nomials has been investigated before by Horrocks [Ho] and Carrell [C]. Although
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the approach in [Ho] is closest to the one here, the main ideas go back to the
fundamental works of Chern [Ch1], Weil [W], and H. Cartan [Car]. We provide
an exposition where the various ingredients from representation theory, differential
geometry, topology of fiber bundles, and Schubert calculus are each presented in
turn. In Sec. 6, we apply Grothendieck’s construction of the Chern classes of Lie
group representations to look for an analogue of these results in the other Lie types.

I thank Bill Fulton and Frank Sottile for encouraging me to write this article,
and also Arnaud Beauville, Allen Knutson, Alain Lascoux, and Danny Ruberman
for useful discussions and email exchanges.

2. Representations and Schur functors

We are concerned here with the polynomial representations of the general linear
group GLn(C). A matrix representation π : GLn → GLN of GLn is polynomial
if the entries of π(g) are polynomials in the entries of g ∈ GLn. The character
of π is the function χ : GLn → C defined by χ(g) = Tr(π(g)). The polynomial
representation ring R = R+(GLn) is the R-algebra generated by the polynomial
characters of GLn. The ring R may be identified with the real vector space spanned
by the irreducible polynomial GLn-representations (up to isomorphism), with the
ring structure given by the tensor product. We use real instead of integer coeffi-
cients here because the Chern-Weil construction in the sequel will involve de Rham
cohomology groups.

The group GLn acts by conjugation on its Lie algebra gln (the space of all n×n
matrices). This induces a GLn action on the ring Pol(gln) of polynomial functions
on gln with real coefficients; we denote by Pol(gln)

GLn the corresponding ring of
invariants. Since GLn is a dense open subset of gln, any character χ ∈ R extends
to a unique element of Pol(gln)

GLn . Conversely, for any invariant polynomial f ∈
Pol(gln)

GLn , the restriction of f to GLn is clearly a polynomial class function, and
hence an element of R. Thus we obtain a canonical ring isomorphism

(3) φ : R+(GLn)→ Pol(gln)
GLn .

In contrast, there is no satisfactory analogue of the morphism φ for the other types
of Lie groups (see Sec. 6). Note that there is already the problem of defining
‘polynomial representations’ for a general complex Lie group.1

Following Schur [S1] [S2], the irreducible polynomial representations of GLn are
parametrized by integer partitions λ = (λ1 > λ2 > · · · > λn > 0) of length (i.e.
number of nonzero parts λi) at most n. For each partition λ there is a Schur functor
sλ : V → V, where V denotes the category of finite dimensional C-vector spaces
and C-linear maps. If V = Cn is the standard representation of GLn, then the
irreducible representation corresponding to λ is the Schur module V λ = sλ(V ). In
the language of Lie theory, V λ is the GLn-representation with highest weight λ.
The character of V λ is a Schur polynomial in the eigenvalues of g ∈ GLn.

For completeness, we briefly describe Weyl’s construction of sλ(V ), for any com-
plex vector space V . First, we identify the partition λ with its Young diagram of
boxes; this is an array of p =

∑
λi boxes arranged in left-justified rows, with λi

boxes in the ith row. Number the boxes in λ with the integers 1, . . . , p in order

1For a connected reductive complex Lie group G with Lie algebra g, Knutson suggests to define

a ring of polynomial representations of G as the image of the injective map Pol(g)G
→ Pol(G)G

which is induced by pullback along a generalized Cayley transform G → g (see [KM]).
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going from left to right and top to bottom. The resulting standard tableaux T is
illustrated below on the Young diagram of λ = (4, 3, 2).

1 2 3 4

5 6 7

8 9

Let R (respectively C) denote the subgroup of the symmetric group Sp consisting of
elements which permute the entries of each row (respectively column) of T among
themselves. Consider the elements

aλ =
∑

u∈C

sgn(u)u, bλ =
∑

v∈R

v

of the group algebra C[Sp], and define the Young symmetrizer cλ = aλbλ.
For any vector space V , Sp acts on the right on the p-fold tensor product M =

V ⊗p by permuting the factors, and this action commutes with the left action of
GL(V ) onM . The Schur module sλ(V ) is defined as the image of the mapM →M
that is right multiplication by cλ. This construction is functorial, in the sense that
a linear map f : V →W of vector spaces determines a linear map sλ(f) : sλ(V )→
sλ(W ), with sλ(f1◦f2) = sλ(f1)◦sλ(f2) and sλ(idV ) = idsλ(V ). In passing, we note
that the Specht modules C[Sp]cλ form a complete set of irreducible representations
of the symmetric group Sp, as λ varies over all partitions of p. For more information
on Schur modules the reader may consult e.g. [FH], [F1, §8], [Gr], and [Ma].

Example 1. Let p = 2 and write S2 = {1, σ}. The two relevant partitions λ are
(2) and (1, 1), with respective Young symmetrizers c2 = 1+σ and c1,1 = 1−σ. For

any vector space V , there is a decomposition V ⊗ V = Sym2V ⊕ ∧2V , and we see
that s2(V ) = Sym2V and s1,1(V ) = ∧2V .

Given an n× n matrix A = {aij} of indeterminates, we define the Schur matrix
to be sλ(A). This is a square matrix of size dim(V λ) whose entries are polynomials
in the aij with integer coefficients. Moreover, the map φ in (3) sends V λ to the
invariant polynomial A 7→ Tr(sλ(A)). It is surprising that no explicit formula for
the entries of sλ(A) is known, except in special cases. In general, there are several
algorithms available for this computation, some rather classical (see [CLL], [Cl],
[DKR], and [GK] for a sample).

Example 2. The fundamental representations of GLn are the exterior powers ∧kV ,
for V = Cn and k = 1, . . . , n, which correspond to the partitions λ = (1k). The
Schur matrix ∧kA has order

(
n
k

)
, and its rows (resp. columns) are indexed by the

k-element subsets of the n rows (resp. columns) of A. The entries of ∧kA are the
determinants of the k × k minors in A. The corresponding invariant polynomials
for k = 1 and k = n are given by Tr(A) and det(A), respectively.

If A is a diagonal matrix with eigenvalues x1, . . . , xn, then Tr(sλ(A)) is the Schur
polynomial sλ(x1, . . . , xn). There is much to say about these important polynomials
(see e.g. [M, §I]), but we shall refrain from doing so because they are not used in
the sequel. We simply note here that since the Schur polynomials form a basis of
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the ring of symmetric polynomials in x1, . . . , xn, it follows that the rings in (3) are
both isomorphic to R[x1, . . . , xn]

Sn .

3. The Chern-Weil homomorphism

The homomorphism which is the subject of this section is a fundamental tool in
the theory of characteristic classes. Our main references are the monographs [D],
[GHV], and [GuS], all of which contain detailed expositions of Chern-Weil theory
and the related work of H. Cartan.

Consider a principal GLn-bundle P →M over a differentiable manifold M , and
choose an open cover {Uα} of M which trivializes P . The transition functions for
P with respect to this cover are a system of morphisms gαβ : Uα ∩ Uβ → GLn
satisfying the cocycle condition gαβgβγgγα = 1 on the intersections Uα ∩ Uβ ∩ Uγ .
We may identify P → M with the rank n complex vector bundle with the same
transition functions gαβ ; in other words, with the associated vector bundle for the
standard representation of GLn on Cn.

For each g ∈ GLn, let Rg : P → P denote the right action of GLn on P , and for
each x ∈ P , let vx : gln → TxP be the differential of the map g 7→ xg. A connection

on P is a smooth gln-valued 1-form θ ∈ A1(P, gln) satisfying (i) θxvx = id for all
x ∈ P , and (ii) R∗gθ = Ad(g−1)θ, for all g ∈ GLn. Note that (ii) asserts that θ is
equivariant with respect to the adjoint representation of GLn. Connections always
exist, provided the base manifold M admits partitions of unity.

The curvature Θ ∈ A2(P, gln) of the connection θ is defined by the Maurer-

Cartan structure equation Θ = dθ+ 1
2 [θ, θ] (this is Élie Cartan, the father of Henri

Cartan). A basic theorem of Weil states that for any homogeneous polynomial
f ∈ Pol(gln)

GLn of degree k, (i) the differential form f( i
2πΘ) is closed in A2k(M,R),

and (ii) its de Rham cohomology class does not depend on the connection θ. The
resulting map

Pol(gln)
GLn → H∗(M,R); f 7→ f(

i

2π
Θ)

is an algebra homomorphism called the Chern-Weil homomorphism. We will con-
tinue to use cohomology with real coefficients unless otherwise indicated.

In topology, one constructs a contractible space EGLn on which GLn acts freely,
and with quotient equal to the classifying space BGLn. Every principal GLn-
bundle over M is a pullback of the universal bundle EGLn → BGLn; in this
way, the isomorphism classes of principal GLn-bundles over M are in one-to-one
correspondence with the homotopy classes of maps from M to BGLn. Moreover,
the previous definitions of connection and curvature have universal analogues, and
there is a homomorphism Pol(gln)

GLn → H∗(BGLn) (see [NR] or [D, §5,6] for a
detailed construction). Since the quotient GLn/U(n) of GLn by the unitary group
U(n) is diffeomorphic to a Euclidean space, the inclusion U(n) ↪→ GLn induces
an isomorphism H∗(BGLn) → H∗(BU(n)). We deduce that there is a universal
Chern-Weil homomorphism

(4) ψ : Pol(gln)
GLn → H∗(BU(n)).

H. Cartan [Car] proved that the map ψ is an isomorphism of polynomial rings.
The cohomology of BU(n) is thus identified with the ring of characteristic classes
of principal GLn-bundles (or complex vector bundles). If the polynomial f ∈
Pol(gln)

GLn has integer coefficients, then its image under the Chern-Weil map (4)
lies in H∗(BU(n),Z) (which we identify with its image in H∗(BU(n),R)).
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Example 3. Let E →M be a rank n complex vector bundle over M . The Chern-
Weil homomorphism sends the invariant polynomial A 7→ Tr(∧kA) of the previous
section to the k-th Chern class ck(E) ∈ H2k(M,Z).

4. Schubert varieties and Schubert forms

The cohomology ring of the Grassmannian X = G(m,n) has a basis of Schubert
classes σλ, one for each partition λ whose Young diagram is contained in an n×m
rectangle (equivalently, λ is a partition of length at most n with λ1 6 m). The
Schubert class σλ may be defined using the Poincaré duality isomorphism between
cohomology and homology, as follows: σλ is the element of H∗(X) whose cap
product with the fundamental class of X is the homology class of a Schubert variety
Xλ, described below. If the diagram of λ does not fit in the above rectangle, then
we set σλ = 0.

To define Xλ, consider the fixed complete flag of subspaces

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = CN

where N = m + n and Fj = Cj × {0} ⊂ CN , for 0 6 j 6 N . Let λ′ denote the
conjugate partition, whose diagram is the transpose of the diagram of λ. The variety
Xλ consists of those m-dimensional subspaces U such that dim(U ∩ Fn+i−λ′

i
) > i,

for 1 6 i 6 m. The complex codimension of Xλ in X is given by the weight
|λ| =

∑
λi of λ. Note that our indexing convention for Schubert varieties is the

transpose of the usual one, as found for example in [F2, §4].
There is a tautological short exact sequence of vector bundles

(5) 0→ S → E → Q→ 0

over X, where E = X × CN is the trivial bundle of rank N over X, S denotes the
tautological rank m subbundle of E, and Q the quotient bundle. The total space
of S is the submanifold of the product X × CN consisting of those pairs ([U ], v)
with v ∈ U , and the projection X × CN → X restricts to the map from S to X.
Observe that the fiber of S (resp. Q) over a point [U ] in X which corresponds to
the subspace U ⊂ CN is given by U itself (resp. CN/U). From now on it will be
convenient to work with the quotient bundle Q and to think of X = G(m,n) as
parametrizing rank n quotients of CN .

According to [BT, §23] (see also [MS, §14] and [Hu, §18]), the infinite Grassman-
nian G(∞, n) = limm→∞G(m,n) provides a model for the classifying space BU(n)
of the unitary group. There is a natural sequence of inclusions

· · · ↪→ G(m− 1, n) ↪→ G(m,n) ↪→ G(m+ 1, n) ↪→ · · ·

and one defines the space G(∞, n) as the union of all the finite Grassmannians
G(m,n) over m > 1, with the inductive topology. The inclusion G(m,n) ↪→
G(∞, n) = BU(n) induces a surjection

ζ : H∗(BU(n))→ H∗(G(m,n)).

Moreover, there is a universal rank n quotient bundle Q → G(∞, n) which corre-
sponds to the universal bundle EU(n)→ BU(n).

We let ρ = ζ ◦ ψ ◦ φ denote the composite of the three maps

(6) R+(GLn)
φ
−→ Pol(gln)

GLn ψ
−→ H∗(BU(n))

ζ
−→ H∗(G(m,n)).



6 HARRY TAMVAKIS

The connection between the representation ring of GLn and the cohomology of
G(m,n) is exhibited in the following result.2

Theorem 1. For every λ, the ring homomorphism ρ : R+(GLn) → H∗(G(m,n))
maps the class of the irreducible representation V λ to the Schubert class σλ.

As a prelude to the proof of Theorem 1, we will describe an equivalent method
of constructing the morphism ρ. This involves putting a U(N)-invariant hermitian
metric on the vector bundle Q → X and using the canonical induced linear con-
nection to define Schubert forms Ωλ which represent the Schubert classes in the de
Rham cohomology of X. We will denote by Ak(X) (respectively Ak(X,Q)) the
real vector space of C∞ k-forms on X (respectively, Q-valued k-forms on X). A
connection on Q is a C-linear map D : A0(X,Q)→ A1(X,Q) such that

(7) D(f · s) = df ⊗ s+ f · ds

for all functions f ∈ A0(X) and sections s ∈ A0(X,Q). The type decomposition
A1(X,Q) = A1,0(X,Q)

⊕
A0,1(X,Q) of differential forms induces a decomposition

D = D1,0 +D0,1 of each connection D on Q.
The standard hermitian metric on CN gives a metric on the trivial vector bundle

in (5) and induces a metric on the subbundle S. One obtains a hermitian metric h
on the quotient bundle Q by identifying it with the orthogonal complement of S.
The metric h induces a unique connection D = D(Q,h) such that D0,1 = ∂Q and
D is unitary, i.e.

d h(s, t) = h(Ds, t) + h(s,Dt), for all s, t ∈ A0(X,Q).

The connection D is called the hermitian holomorphic connection of (Q,h). We
extend D to Q-valued forms by using the Leibnitz rule

D(ω ⊗ s) = dω ⊗ s+ (−1)degωω ⊗Ds.

The curvature of D is the composite

Ω̃ = D2 : A0(X,Q)→ A2(X,Q).

By applying (7) twice we compute that Ω̃(f ·s) = f ·Ω̃(s), hence the map Ω̃ isA0(X)-

linear. We deduce that Ω̃ ∈ A2(X,End(Q)). In fact, Ω̃ = D1,1 ∈ A1,1(X,End(Q)),

because D0,2 = ∂
2

Q = 0, so D2,0 also vanishes by unitarity. It follows that locally,

we can identify Ω̃ with an n× n matrix of (1, 1)-forms on X.

Let Ω = i
2π Ω̃. For each partition λ, define the Schubert form Ωλ = Tr(sλ(Ω));

this is a closed form of type (|λ|, |λ|) on X. Since the hermitian vector bundle (Q,h)
is U(N)-equivariant (for the natural U(N) action on X), the Schubert forms Ωλ
are U(N)-invariant. The class of Ωλ in the de Rham cohomology group H2|λ|(X)
coincides with the image ρ(V λ) in Theorem 1. One has an equation

Tr(sλ(Ω)) ∧ Tr(sµ(Ω)) = Tr(sλ(Ω)⊗ sµ(Ω)) =
∑

ν

cνλµTr(sν(Ω))

of differential forms on X, and hence a formula

[Ωλ] · [Ωµ] = [Ωλ ∧ Ωµ] =
∑

ν

cνλµ[Ων ]

in H∗(X), with the constants cνλµ defined as in (1).

2The pun here and in the title of this paper is intended.
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To prove the theorem, we must show that [Ωλ] is equal to the Schubert class σλ.
The link between Schubert classes and GLn-modules is then evident: each Schubert
class σλ is represented in de Rham cohomology by a unique3 U(N)-invariant form,
given as the trace of the Schur functor sλ on the curvature matrix Ω. This was first
demonstrated by Horrocks [Ho]; we give a different proof in the next section.

5. Proof of Theorem 1

For each integer k with 1 6 k 6 n, define the special Schubert class σk = σ(1k)
to be the class corresponding to the partition (1k) = (1, 1, . . . , 1) of weight k. Over
a century ago, Pieri [P] proved the following multiplication rule in H∗(X):

(8) σλ · σ
k =

∑
σµ,

summed over all partitions µ whose diagram is obtained by adding k boxes to the
diagram of λ, no two in the same row (a more recent proof is given in [HP]).

A straightforward consequence of (8) is the formula

σλ = det(σλ
′

i+j−i)16i,j6m,

due to Giambelli [G1], which shows that the special classes generate the cohomology
ring ofG(m,n) (the corresponding determinantal formula for Schur polynomials was
discovered by Jacobi [J]). Moreover, one knows that the same Pieri rule governs
the tensor product decomposition

V λ ⊗ ∧kV =
∑

V µ

of GLn-modules (several different proofs of this are found in [FH, §I.6] and [Z,
§79]). Therefore, Theorem 1 will follow from the equality σk = [Tr(∧kΩ)], where
Tr(∧kΩ) = ck(Q,h) is the k-th Chern form of (Q,h). Equivalently, we must show
that for all partitions λ and all k = 1, . . . , n,

(9)

∫

Xλ

Tr(∧kΩ) = δ(λ; (1k)),

where δ(λ; µ) is Kronecker’s delta.
The integrals (9) were computed by Chern in [Ch1, §2], who wrote the integrand

using the Maurer-Cartan forms of the unitary group U(N). The point is that any
invariant form on X = U(N)/(U(m) × U(n)) pulls back to a differential form on
U(N), which can be expressed in terms of the basic invariant forms on U(N).

We will use the differential forms ωij and ωij defined in [T, §5], of type (1, 0)
and (0, 1), respectively, which are a scalar multiple of the Maurer-Cartan forms.
To describe them, let h = {diag(t1, . . . , tN ) | ti ∈ C} be the Cartan subalgebra of
diagonal matrices in glN . Consider the set of roots

∆ = {ti − tj | 1 6 i 6= j 6 N} ⊂ h∗

and denote the root ti − tj by the pair ij. The adjoint representation of h on glN
determines a decomposition

glN = h⊕
∑

ij∈∆

C eij ,

where eij is the matrix with 1 as the ij-th entry and zeroes elsewhere.

3Since the Grassmannian X is a hermitian symmetric space, the U(N)-invariant forms are

harmonic for the natural invariant metric on X coming from the Kähler form Ω1.
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Let eij = −eji and consider the linearly independent set

BX = {eij , eij | i 6 m < j}.

Extend BX to a basis B of glN and let B∗ be the dual basis of gl∗N . For every eij
and eij in BX , let ωij and ωij be the corresponding dual basis vectors in B∗, which
we shall regard as left invariant complex one-forms on U(N). Let ωij = γ ωij and
ωij = γ ωij , where γ is a constant such that γ2 = i

2π .
If π : U(N)→ X denotes the quotient map, then any smooth form η on X pulls

back to

(10) π∗η =
∑

fa1...arb1...bs ωa1
∧ . . . ∧ ωar ∧ ωb1 ∧ . . . ∧ ωbs

on U(N), with coefficients fa1...arb1...bs ∈ C∞(U(N)). The differential forms on
U(N) which arise in this way are exactly those which are invariant under the action
of the group H = U(m)×U(n) (H acts on C∞(U(N)) by right translation and on
Span{ωij , ωij | i 6 m < j} by the dual of the adjoint representation). A smooth
form η on X is of (p, q) type precisely when each summand on the right hand side
of (10) involves p unbarred and q barred terms.

The curvature matrix Ω can now be written explicitly (see [GS, §4] and [T, Prop.
2]); one has Ω = {Γαβ}m+16α,β6N with

(11) Γαβ =

m∑

i=1

ωiα ∧ ωiβ .

Applying the defining expansion of a determinant in terms of its entries, we obtain

(12) Tr(∧k(Ω)) =
1

k!

∑
sgn(α1, . . . , αk; β1, . . . , βk) Γα1β1

· · ·Γαkβk ,

where the sum is over all indices α1, . . . , αk, β1, . . . , βk from the set {m+1, . . . , N},
and sgn(α1, . . . , αk; β1, . . . , βk) is zero except when (β1, . . . , βk) is a permutation
of (α1, . . . , αk), in which case it equals +1 or −1 according to the sign of the
permutation. Equations (11) and (12) correspond exactly to [Ch1, (12) and (13)],
and (9) is proved in loc. cit., Theorem 5, by directly integrating the forms (12) over
the Schubert varieties in X (see also [Ch3, IV.2]).

Remarks. 1) Although the differential forms on the right hand side of (12) appear
in [Ch1], their interpretation as invariant polynomials in the entries of the curvature
matrix Ω = Ω(Q,h) does not. This connection is explained clearly later, in Chern’s
University of Chicago notes [Ch4, §12] and in [Ch5, §8].

2) For the purposes of the proof, it is not necessary to know that the ring ho-
momorphisms in (3) and (4) are isomorphisms. Furthermore, each of the three
morphisms in (6) maps integral classes to integral classes. If R+(GLn) denotes the
Z-submodule of R+(GLn) spanned by the polynomial characters of GLn, we obtain
a natural induced homomorphism

ρZ : R+(GLn) −→ H∗(G(m,n),Z)

which sends [V λ] to the Schubert class σλ for every partition λ.
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6. The problem in other Lie types

In this section, we look for an analogue of Theorem 1 with GLn replaced by a
group of a different Lie type. Let G be a complex connected reductive Lie group, T
a maximal torus in G and let g and h be the Lie algebras of G and T , respectively.
The adjoint action of G on g induces an action on the ring Pol(g) of polynomial
functions on g with real coefficients. If K is a maximal compact subgroup of G,
then Cartan’s theorem [Car] gives a ring isomorphism

(13) ψG : Pol(g)G → H∗(BK)

as before.
If G is not of type A, then extending (13) – on either side – to a sequence

analogous to (6) is problematic. We will go one step further by using the natural
λ-ring structure on the representation ring of G. Our main reference for λ-rings is
[FL], while we learned much of the material that follows from [Fa], [O], and [Be].

A λ-ring is a commutative ring A with a sequence of operations λi : A→ A such
that λ0 = 1, λ1 = idA and

λk(x+ y) =

k∑

i=0

λi(x)λk−i(y)

for all k > 1 and for all x, y ∈ A. In addition, we require that there are formulas

λk(xy) = Pk(λ
1(x), . . . , λk(x), λ1(y), . . . , λk(y))

and

λk(λ`(x)) = Pk,`(λ
1(x), . . . , λk`(x))

where Pk and Pk,` are universal polynomials with integer coefficients, independent
of the ring A. Setting λt(x) =

∑
i λ

i(x) ti, we have λt(x+ y) = λt(x)λt(y).
Let R(G) denote the integral representation ring of G. Then R(G) is a λ-

ring, with the λ-operations λi : R(G) → R(G) induced by the exterior powers of
representations. There is a unique λ-ring homomorphism ε : R(G)→ Z, called the
augmentation, which associates to each G-representation V its dimension ε(V ).

Grothendieck [SGA6] introduced λ-rings in his work extending the Hirzebruch-
Riemann-Roch theorem to a relative, functorial setting. He showed that the purely
algebraic data of a λ-ring A together with an augmentation map A→ Z suffice to
define characteristic classes for the elements of A. The Chern classes constructed in
this way take values in the graded ring grA associated to a certain filtration on A
coming from the λ-structure, known as the γ-filtration. Grothendieck applied this
theory for A equal to the K-theory group of vector bundles on an algebraic variety;
we will take A = R(G) in the sequel.

The γ-operations γi on R(G) are defined by the formula

γt(x) = λt/(1−t)(x) =
∑

i

γi(x) ti, ∀x ∈ R(G).

The γ-filtration is the decreasing sequence {F k}k>0 where F
0 = R(G), F 1 = Ker(ε)

and F k is spanned by the elements γi1(x1) · · · γ
ir (xr) with x1, . . . , xr ∈ F 1 and∑r

p=1 ip > k. Let grR(G) =
⊕

k>0 F
k/F k+1 be the associated graded ring. For

each element x ∈ R(G), there are Chern classes ck(x) with values in grkR(G). By
definition, ck(x) = γk(x− ε(x)).
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Example 4. Suppose that the torus T has rank n, and let Λ be its character
group. We can identify Λ with the multiplicative group of monomials αm1

1 · · ·αmn
n

with mi ∈ Z, where α±1i corresponds to the map (t1, . . . , tn) 7→ t±1i , for 1 6 i 6 n.
We then have

R(T ) = Z[Λ] = Z[α1, α−11 , . . . , αn, α
−1
n ].

The relations λt(ξ) = 1 + ξt and ε(ξ) = 1 for ξ ∈ Λ determine the λ-structure
and augmentation on R(T ). It is straightforward to check that the γ-filtration
of R(T ) coincides with its F 1-adic filtration, that is, F k = (F 1)k for all k > 1.
The map ξ 7→ ξ − 1 gives a canonical isomorphism from Λ to the additive group
gr1R(T ) = F 1/F 2. If ui ∈ gr1R(T ) denotes the image of αi under this map,
then the elements u1, . . . , un are algebraically independent over Z, and we have
grR(T ) = Z[u1, . . . , un] ∼= Sym(Λ) (see e.g. [O, Prop. 3.2]). We may thus identify
the k-th Chern class of ξ1+ . . .+ξr (where ξi ∈ Λ) with the element ek(ξ1, . . . , ξr) ∈
Sym(Λ).

The Weyl group W acts on T , hence on the ring R(T ), and the restriction map
η : R(G) → R(T ) induces an isomorphism of λ-rings R(G) → R(T )W . Let us
now pass to real coefficients: define R(G) = R(G) ⊗ R, grR(G) = grR(G) ⊗ R
and similarly for the torus T . One can then show that the map η respects the γ-
filtrations of both R(G) and R(T ), and thus induces a graded ring homomorphism
gr(η) : grR(G) → grR(T ), which maps grR(G) isomorphically onto the invariant
subring (grR(T ))W (see [Fa], [O], and [Be] for further discussion and proofs).

Assume that the Lie groups G, T and their Lie algebras are defined over the real
numbers, and view h as a vector space over R. Applying the map which takes a
character in Λ to its derivative in h∗, we can identify (grR(T ))W ∼= (Sym(Λ))W ⊗R
with the algebra Pol(h)W ofW -invariant polynomial functions on h (again with real
coefficients). Chevalley proved that the restriction homomorphism Pol(g)→ Pol(h)
maps Pol(g)G isomorphically onto Pol(h)W . Combining this with the preceeding
ingredients shows that (13) extends to a sequence of isomorphisms

grR(G) −→ Pol(g)G
ψG
−→ H∗(BK)

which respects the natural grading in all three rings.

Example 5. Let x be the element of R(GLn) which corresponds to the standard
representation of GLn(C) on Cn. It is easy to see that the k-th Chern class ck(x)
(in the above sense) is the invariant polynomial A 7→ Tr(∧kA) on gln. Theorem 1
shows that the Chern classes of the standard representation of GLn map naturally
to the special Schubert classes in G(m,n). The fact that the target ring grR(GLn)
for the R(GLn) Chern classes is naturally graded isomorphic to R+(GLn) is a type
A phenomenon.

Example 6. Let G = Sp2n(C) be the symplectic group of rank n and K = Sp(2n)
the homonymous compact subgroup. Let y ∈ R(Sp2n) be the class of the standard
representation of G on C2n. In this case the 2k-th Chern class c2k(y) is the invariant
polynomial A 7→ Tr(∧2kA) on g = sp2n, and these classes for 1 6 k 6 n generate
the algebra Pol(g)G (the odd Chern classes of y vanish). Observe that Pol(g)G is
isomorphic to Pol(gln)

GLn , up to a doubling of degrees.
The classifying space BSp(2n) may be identified with the infinite quaternionic

Grassmannian GH(∞, n), which is the inductive limit of the finite Grassmannians
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Y = GH(m,n) over all m > 0. Note that Y = Sp(2N)/(Sp(2m)×Sp(2n)) is a com-
pact oriented manifold of real dimension 4mn, which parametrizes m-dimensional
left H-linear subspaces of HN . There is a rank n quotient bundle Q → Y which
is a pullback of the universal quotient bundle over GH(∞, n). The cell decomposi-
tion and cohomology ring of Y are identical to those of the complex Grassmannian
G(m,n), again up to a doubling of degrees (see [B1], [GHV, Vol. III, Chp. XI],
and [PR, Appendix A]). In particular, for each partition λ as in Sec. 4, there is
a ‘Schubert variety’ Yλ in Y , defined by the same inequalities that define Xλ in
G(m,n), and a ‘Schubert class’ τλ = [Yλ] ∈ H

4|λ|(Y ). By arguing as in Sec. 5, one
can show that the induced ring homomorphism

grR(Sp2n) −→ Pol(sp2n)
Sp2n

ψSp
−→ H∗(BSp(2n)) −→ H∗(GH(m,n))

maps the generators c2k(y) to the ‘special Schubert classes’ τ(1k).

We remark that the irreducible characters χλ of Sp2n are parametrized by par-
titions of length at most n, as is the case for the polynomial characters of GLn.
Moreover, in the product decomposition

χλχµ =
∑

ν

cνλµ χ
ν ,

the structure constants cνλµ agree with those in (1), whenever |ν| = |λ| + |µ| (see

e.g. [KT, Prop. 2.5.2]).

In the case of the orthogonal groups G = On(C), the classifying space BO(n) is
an infinite real Grassmannian, which is a limit of finite dimensional real Grassman-
nians GR(m,n). However there is no clear analogue of GLn(C) Schubert calculus
on these manifolds, some of which are not even orientable.

7. Concluding remarks

In this final section, we briefly discuss some of the early works where the repre-
sentation theory of Lie groups was applied to study the cohomology of homogeneous
spaces, and which relate somehow to the present paper. For more details about the
early investigations of the Chern-Weil circle of ideas and its applications, we rec-
ommend Chern’s address at the 1950 International Congress [Ch2], Weil’s letters,
written in 1949 and first published in [W], the survey articles by Samelson [Sa] and
Borel [B2], and the historical notes in [GHV, Vol. III].

In the middle of the last century, there emerged two effectively different ap-
proaches to the study of the cohomology of principal bundles and homogeneous
spaces of Lie groups. The techniques used in this paper derive from É. Cartan’s
method of invariant differential forms [Ca] and its later extension by H. Cartan
[Car]. An alternative approach, espoused by Borel [B1] among others, used the
methods of classical algebraic topology. The theorems proved by these two schools
were frequently identical, although the results obtained by topological methods
were usually with Z or Zp coefficients. These latter techniques were applied by
Borel and Hirzebruch [BH] to connect the theory of characteristic classes to the
cohomology of homogeneous spaces G/U , by interpreting the former as elementary
symmetric functions in certain roots of G (or their squares).

Ehresmann [E] investigated the topology of complex Grassmann manifolds (and
other hermitian symmetric spaces) by studying the algebra of K-invariant differ-
ential forms on them (K = U(N) for X = G(m,n)). This relies on the fact that
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the invariant forms are harmonic for the natural hermitian structure on X, which
implies that the ring of all such forms is isomorphic to H∗(X). Kostant [K1] [K2]
later found analogues of these results for arbitrary (generalized) flag manifolds.
The representation theory used to determine the K-invariant forms in this pro-
gram does not directly relate the multiplicities cνλµ in equations (1) and (2). Note

however that the cited works of É. Cartan and Ehresmann were used by Chern
in his fundamental paper on the characteristic classes of complex manifolds [Ch1].
More recently, Stoll [St] used fiber integration to study the algebra of invariant
forms on the Grassmannian, but his work does not address the question posed in
the Introduction.

Following [SGA6], [V] and [Be], the isomorphism between grR(G) and Pol(g)G in
Sec. 6 may be used to construct the Chern-Weil (or characteristic) homomorphism
in algebraic geometry. Let P → X be a principal G-bundle over a smooth algebraic
variety X and let CH∗(X) denote the Chow group of algebraic cycles on X modulo
rational equivalence. The Grothendieck group K(X) of vector bundles on X is a λ-
ring, with the λ-operations induced by exterior powers. According to [SGA6, Exp.
XIV], the graded ring grK(X)⊗R is canonically isomorphic to the real Chow ring
CH∗R(X) = CH∗(X) ⊗ R. There is a natural λ-ring homomorphism π : R(G) →
K(X), defined by sending a representation G → GL(E) to the associated vector
bundle P ×G E over X. The characteristic homomorphism is the induced map

gr(π)R : Pol(g)G −→ CH∗R(X).
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ibid., 57–71, Georges Thone, Liège; Masson et Cie., Paris, 1951. Reprinted in [GuS].

[Ch1] S. S. Chern : Characteristic classes of Hermitian manifolds, Ann. of Math. (2) 47 (1946),
85–121.

[Ch2] S. S. Chern : Differential geometry of fiber bundles, Proceedings of the International

Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, 397–411. Amer. Math. Soc.,

Providence, 1952.
[Ch3] S. S. Chern : Topics in Differential Geometry, The Institute for Advanced Study, Prince-

ton, N. J., 1951. Reprinted in Selected Papers, vol. IV, Springer-Verlag, 1989, 331–397.



FROM REPRESENTATION THEORY TO SCHUBERT CALCULUS 13

[Ch4] S. S. Chern : Complex Manifolds (mimeographed notes), University of Chicago, Chicago,

1956.

[Ch5] S. S. Chern : Complex Manifolds Without Potential Theory, Van Nostrand Mathematical

Studies, No. 15, D. Van Nostrand Co., Princeton, 1968.

[Cl] M. Clausen : Letter place algebras and a characteristic-free approach to the representation

theory of the general linear and symmetric groups, I, Adv. in Math. 33 (1979), no. 2,

161–191.

[DKR] J. Désarménien, J. P. S. Kung, and G.-C. Rota : Invariant theory, Young bitableaux, and

combinatorics, Adv. in Math. 27 (1978), no. 1, 63–92.

[D] J. L. Dupont : Curvature and Characteristic Classes, Lecture Notes in Mathematics 640,

Springer-Verlag, Berlin-New York, 1978.

[E] C. Ehresmann : Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35
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Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6),

Lecture Notes in Math. 225, Springer-Verlag, Berlin-New York, 1971.
[St] W. Stoll : Invariant Forms on Grassmann Manifolds, Annals of Math. Studies 89, Prince-

ton University Press, Princeton, 1977.
[T] H. Tamvakis : Arithmetic intersection theory on flag varieties, Math. Ann. 314 (1999),

no. 4, 641–665.
[V] A. Vistoli : Characteristic classes of principal bundles in algebraic intersection theory,

Duke Math. J. 58 (1989), 299–315.
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