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Abstract. Fulton’s universal Schubert polynomials [F3] represent degener-

acy loci for morphisms of vector bundles with rank conditions coming from a

permutation. The quiver formula of Buch-Fulton [BF] expresses these poly-

nomials as an integer linear combination of products of Schur determinants.

We present a positive, nonrecursive combinatorial formula for the coefficients.

Our result is applied to obtain new expansions for the Schubert polynomials

of Lascoux and Schützenberger [LS1] and explicit Giambelli formulas in the

classical and quantum cohomology ring of any partial flag variety.

1. Introduction

The work of Buch and Fulton [BF] established a formula for a general kind of
degeneracy locus associated to an oriented quiver of type A. The main ingredients
in this formula are Schur determinants and certain integers, the quiver coefficients,
which generalize the classical Littlewood-Richardson coefficients. Our aim in this
paper is to prove a positive combinatorial formula for the quiver coefficients when
the rank conditions defining the degeneracy locus are given by a permutation. In
particular, this gives new expansions for Fulton’s universal Schubert polynomials
[F3] and for the Schubert polynomials of Lascoux and Schützenberger [LS1].

Let X be a smooth complex algebraic variety and let

(1) G1 → · · · → Gn−1 → Gn → Fn → Fn−1 → · · · → F1

be a sequence of vector bundles and morphisms over X, such that Gi and Fi have
rank i for each i. For every permutation w in the symmetric group Sn+1 there is a
degeneracy locus

Ωw(G• → F•) = {x ∈ X | rank(Gq(x)→ Fp(x)) 6 rw(p, q) for all 1 6 p, q 6 n} ,

where rw(p, q) is the number of i 6 p such that w(i) 6 q. The universal double
Schubert polynomial Sw(c; d) of Fulton gives a formula for this locus; this is a
polynomial in the variables ci(j) and di(j) for 1 6 i 6 j 6 n. When the codimension
of Ωw(G• → F•) is equal to the length of w, its class [Ωw] in the cohomology (or
Chow ring) of X is obtained by evaluating Sw(c; d) at the Chern classes ci(p) and
di(q) of the bundles Fp and Gq, respectively.

The quiver formula given in [BF] specializes to a formula for universal double
Schubert polynomials:

Sw(c; d) =
∑

λ

c
(n)
w,λ sλ1(d(2)− d(1)) · · · sλn(c(n)− d(n)) · · · sλ2n−1(c(1)− c(2)) .
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Here the sum is over sequences of 2n − 1 partitions λ = (λ1, . . . , λ2n−1) and each
sλi is a Schur determinant in the difference of the two alphabets in its argument.

The quiver coefficients c
(n)
w,λ can be computed by an inductive algorithm, and are

conjectured to be nonnegative [BF].
Let col(T ) denote the column word of a semistandard Young tableau T , the word

obtained by reading the entries of the columns of the tableau from bottom to top
and left to right. The following theorem is our main result.

Theorem 1. Suppose that w ∈ Sn+1 and λ = (λ1, . . . , λ2n−1) is a sequence of

partitions. Then c
(n)
w,λ equals the number of sequences of semistandard tableaux

(T1, . . . , T2n−1) such that the shape of Ti is conjugate to λi, the entries of Ti are at
most min(i, 2n− i), and col(T1) · · · col(T2n−1) is a reduced word for w.

As a consequence of Theorem 1, we obtain formulas for the Schubert polynomials
of Lascoux and Schützenberger, expressing them as linear combinations of products
of Schur polynomials in disjoint sets of variables. The coefficients in these expan-

sions are all quiver coefficients c
(n)
w,λ; this is true in particular for the expansion of a

Schubert polynomial as a linear combination of monomials (see, e.g., [BJS, FS]).
The Stanley symmetric functions or stable Schubert polynomials [St] play a cen-

tral role in this paper. Our main result generalizes the formula of Fomin and Greene
[FG] for the expansion of these symmetric functions in the Schur basis, as well as
the connection between quiver coefficients and Stanley symmetric functions ob-
tained in [B]. In fact, we show that the universal double Schubert polynomials can
be expressed as a multiplicity-free sum of products of Stanley symmetric functions
(Theorem 3).

It should be noted that the formula for Schubert polynomials suggested in this
paper is different from the one given in [BF]. For example, the formula from [BF,
§2.3] does not make it clear that the monomial coefficients of Schubert polynomials
are quiver coefficients, or even that these monomial coefficients are nonnegative.
We remark however that the arguments used in this article do not imply the quiver
formula of [BF] in the case of universal Schubert polynomials, but rather rely on
some results of loc. cit.

Knutson, Miller, and Shimozono have recently announced that they can prove
that the general quiver coefficients defined in [BF] are non-negative, using different
methods. On the other hand, the techniques of the present paper may also be
used to obtain an analogous treatment of Grothendieck polynomials and quiver
formulas for the structure sheaves of degeneracy loci in K-theory. This application
is presented in [BKTY].

We review the universal Schubert polynomials and Stanley symmetric functions
in Section 2; in addition, we prove some required properties. In Section 3 we
introduce quiver varieties and we prove Theorem 1. In Section 4 we apply our
results to the case of ordinary Schubert polynomials. Finally, in Section 5 we
use our expressions for single Schubert polynomials to obtain explicit Giambelli
formulas for the classical and quantum cohomology rings of partial flag varieties.

The authors thank Sergey Fomin, Peter Magyar, and Alexander Postnikov for
useful discussions.
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2. Preliminaries

2.1. Universal Schubert polynomials. We begin by recalling the definition of
the double Schubert polynomials of Lascoux and Schützenberger [LS1, L1]. Let
X = (x1, x2, . . .) and Y = (y1, y2, . . .) be two sequences of commuting independent
variables. Given a permutation w ∈ Sn, the double Schubert polynomial Sw(X;Y )
is defined recursively as follows. If w = w0 is the longest permutation in Sn then
we set

Sw0
(X;Y ) =

∏

i+j6n

(xi − yj) .

Otherwise we can find a simple transposition si = (i, i+1) ∈ Sn such that `(wsi) =
`(w) + 1. Here `(w) denotes the length of w, which is the smallest number ` for
which w can be written as a product of ` simple transpositions. We then define

Sw(X;Y ) = ∂i(Swsi
(X;Y )),

where ∂i is the divided difference operator given by

∂i(f) =
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

The (single) Schubert polynomial is defined by Sw(X) = Sw(X; 0).
Suppose now that w is a permutation in Sn+1. If u1, . . . , ur are permutations,

we will write u1 · · ·ur = w if `(u1)+ · · ·+`(ur) = `(w) and the product of u1, . . . , ur
is equal to w. In this case we say u1 · · ·ur is a reduced factorization of w.

The double universal Schubert polynomial Sw(c; d) of [F3] is a polynomial in the
variables ci(j) and di(j) for 1 6 i 6 j 6 n. For convenience we set c0(j) = d0(j) = 1
for all j and ci(j) = di(j) = 0 if i < 0 or i > j. The classical Schubert polynomial
Sw(X) can be written uniquely in the form

Sw(X) =
∑

ai1,...,in ei1(x1) ei2(x1, x2) · · · ein(x1, . . . , xn)

where the sum is over all sequences (i1, . . . , in) with each iα 6 α and
∑

iα =
`(w) [LS3]. The coefficients ai1,...,in are uniquely determined integers depending on
w. Define the single universal Schubert polynomial for w by

Sw(c) =
∑

ai1,...,in ci1(1) ci2(2) · · · cin(n)

and the double universal Schubert polynomial by

Sw(c; d) =
∑

u·v=w

(−1)`(u)Su−1(d)Sv(c) .

Since the ordinary Schubert polynomial Sw(X) does not depend on which sym-
metric group w belongs to, the same is true for Sw(c; d).

As explained in the introduction, the double universal Schubert polynomials
describe the degeneracy loci Ωw(G• → F•) of morphisms between vector bundles
on a smooth algebraic variety X. The precise statement is the following result.

Theorem 2 (Fulton [F3]). If the codimension of Ωw(G• → F•) is equal to `(w)
(or if this locus is empty) then the class of Ωw(G• → F•) in the cohomology ring of
X is obtained from Sw(c; d) by evaluating at the Chern classes of the bundles, that
is, by setting ci(j) = ci(Fj) and di(j) = ci(Gj).

We will need the following consequence of Theorem 2, which generalizes a result
of Kirillov [K, (5.5)], see also [F3, (26)].
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Proposition 1. Choose m > 0 and substitute b(j) for c(j) and for d(j) in Sw(c; d)
for all j > m+ 1. We then have

Sw(c(1), . . . , c(m), b(m+ 1), . . . ; d(1), . . . , d(m), b(m+ 1), . . . )

=

{
Sw(c; d) if w ∈ Sm+1

0 otherwise.

Proof. If w ∈ Sm+1 then it follows from the definition that Sw(c; d) is independent
of ci(j) and di(j) for j > m+ 1.

Assume that w ∈ Sn+1 r Sn, where n > m. We claim that Sw(c; d) vanishes
as soon as we set ci(n) = di(n). To see this, consider a variety X with bundles Fj

for 1 6 j 6 n and Gj for 1 6 j 6 n − 1, such that rank(Fj) = rank(Gj) = j, and
such that all monomials of degree `(w) in the Chern classes of these bundles are
linearly independent. For example we can take a product of Grassmann varieties
X = Gr(1, N)×· · ·×Gr(n,N)×· · ·×Gr(1, N) for N large and use the tautological
bundles.

If we set Gn = Fn then we have a sequence of bundles (1) for which the map
Gn → Fn is the identity and all other maps are zero. Since rw(n, n) = n − 1 it
follows that the locus Ωw(G• → F•) is empty. Theorem 2 therefore implies that
Sw(c; d) is zero when ci(n) = di(n) = ci(Fn) for 1 6 i 6 n. ¤

The next identity is due to Kirillov [K]; we include a proof for completeness.

Corollary 1 (Kirillov). If bi(j), ci(j), and di(j) are three sets of variables,
1 6 i 6 j 6 n, then we have

Sw(c; d) =
∑

u·v=w

Su(b; d)Sv(c; b) .

Proof. Let S(c; d) denote the function from permutations to polynomials which
maps w to Sw(c; d). Following [M1, §6] we define the product of two such functions
f and g by the formula

(fg)(w) =
∑

u·v=w

f(u)g(v) .

Fulton’s definition of universal Schubert polynomials then says that S(c; d) =
S(0; d)S(c; 0), and Proposition 1 shows that S(0; c)S(c; 0) = S(c; c) = 1, where

1(w) = δ1,w. Now (6.6) of [M1] implies that also S(c; 0)S(0; c) = 1. We therefore
obtain

S(c; d) = S(0; d)S(c; 0) = S(0; d)S(b; 0)S(0; b)S(c; 0) = S(b; d)S(c; b) ,

as required. ¤

Later, we will need the following observation: Proposition 1 and Corollary 1
together imply that

(2) Sw(c; d) =
∑

u·v=w

Su(0, . . . , 0, c(r+1), c(r+2), . . . ; d) ·Sv(c(1), . . . , c(r); 0)

and, similarly, that

(3) Sw(c; d) =
∑

u·v=w

Su(0; d(1), . . . , d(r)) ·Sv(c; 0, . . . , 0, d(r+1), d(r+2), . . . ) .
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2.2. Symmetric functions. For each integer partition α = (α1 > · · · > αp > 0),
let |α| =

∑
αi and let α′ denote the conjugate of α. Let c = {c1, c2, . . .} and d =

{d1, d2, . . .} be ordered sets of independent variables. Define the Schur determinant

sα(c− d) = det(hαi+j−i)p×p,

where the elements hk are determined by the identity of formal power series

∑

k∈Z

hkt
k =

1− d1t+ d2t
2 − · · ·

1− c1t+ c2t2 − · · ·
.

In particular, h0 = 1 and hk = 0 for k < 0. The supersymmetric Schur functions
sα(X/Y ) are obtained by setting ci = ei(X) and di = ei(Y ) for all i, and the usual
Schur polynomials are given by the specializations

sα(X/Y )|Y =0 = sα(X) and sα(X/Y )|X=0 = (−1)|α|sα′(Y ) .

If E and F are two vector bundles with total Chern classes c(E) and c(F ),
respectively, we will denote sα(c(E)− c(F )) by sα(E − F ). For any three bundles
E, F , and G, there is a basic combinatorial identity [M2, §1.5]:

(4) sα(G− E) =
∑

Nα
βγ sβ(F − E) sγ(G− F ),

where the sum is over partitions β and γ with |β| + |γ| = |α|, and Nα
βγ is a

Littlewood-Richardson coefficient.
Let Λ denote the ring of symmetric functions (as in [M2]). For each permutation

w ∈ Sn there is a stable Schubert polynomial or Stanley symmetric function Fw ∈ Λ
which is uniquely determined by the property that

Fw(x1, . . . , xk) = S1m×w(x1, . . . , xk)

for all m > k. 1 Here 1m × w ∈ Sn+m is the permutation which is the identity on
{1, . . . ,m} and which maps j to w(j −m) +m for j > m (see [M1, (7.18)]). When
Fw is written in the basis of Schur functions, one has

Fw =
∑

α : |α|=`(w)

dwα sα

for some nonnegative integers dwα [EG, LS2]. Fomin and Greene show that the
coefficient dwα equals the number of semistandard tableaux T of shape α′ such
that the column word of T is a reduced word for w [FG, Thm. 1.2]. On the other
hand, Buch [B, Cor. 4.1] proved that the dwα are special cases of quiver coefficients,
and we will use this connection in the sequel.

3. Quiver varieties

3.1. Definitions. Let
E• : E1 → E2 → · · · → En

be a sequence of vector bundles and bundle maps over a non-singular variety X.
Given rank conditions r = {rij} for 1 6 i < j 6 n there is a quiver variety given
by

Ωr(E•) = {x ∈ X | rank(Ei(x)→ Ej(x)) 6 rij ∀i < j} .

For convenience, we set rii = rankEi for all i, and we demand that the rank
conditions satisfy rij > max(ri−1,j , ri,j+1) and rij + ri−1,j+1 > ri−1,j + ri,j+1 for

1In Stanley’s notation, the function Fw−1 is assigned to w.



6 ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, AND ALEXANDER YONG

all i ≤ j. In this case, the expected codimension of Ωr(E•) is the number d(r) =∑
i<j(ri,j−1−rij)(ri+1,j−rij). The main result of [BF] states that when the quiver

variety Ωr(E•) has this codimension, its cohomology class is given by

(5) [Ωr(E•)] =
∑

λ

cλ(r) sλ1(E2 −E1) · · · sλn−1(En − En−1) .

Here the sum is over all sequences of partitions λ = (λ1, . . . , λn−1) such that∑
|λi| = d(r), and the coefficients cλ(r) are integers computed by a combinato-

rial algorithm which we will not reproduce here. These coefficients are uniquely
determined by the condition that (5) is true for all varieties X and sequences E•,
as well as the condition that cλ(r) = cλ(r

′), where r′ = {r′ij} is the set of rank
conditions given by r′ij = rij + 1 for all i 6 j.

Suppose the index p is such that all rank conditions rank(Ei(x)→ Ep(x)) 6 rip
and rank(Ep(x) → Ej(x)) 6 rpj may be deduced from other rank conditions.
Following [BF, §4], we will then say that the bundle Ep is inessential. Omitting an
inessential bundle Ep from E• produces a sequence

E′
•

: E1 → · · · → Ep−1 → Ep+1 → · · · → En,

where the map from Ep−1 to Ep+1 is the composition Ep−1 → Ep → Ep+1. If r′

denotes the restriction of the rank conditions to E ′
•
, we have that Ωr′(E

′
•
) = Ωr(E•).

We can use (4) to expand any factor sα(Ep+1−Ep−1) occurring in the quiver formula
for Ωr′(E

′
•
) into a sum of products of the form sβ(Ep − Ep−1)sγ(Ep+1 − Ep), and

thus arrive at the quiver formula (5) for Ωr(E•).
The loci associated with universal Schubert polynomials are special cases of

quiver varieties. Given w ∈ Sn+1 we define rank conditions r(n) = {r
(n)
ij } for

1 6 i 6 j 6 2n by

r
(n)
ij =





rw(2n+ 1− j, i) if i 6 n < j

i if j 6 n

2n+ 1− j if i > n+ 1.

Then Ωw(G• → F•) is identical to the quiver variety Ωr(n)(G• → F•), and further-

more we have `(w) = d(r(n)). If we let c
(n)
w,λ = cλ(r

(n)) denote the quiver coefficients
corresponding to this locus, it follows that

(6) Sw(c; d) =
∑

λ

c
(n)
w,λ sλ1(d(2)−d(1)) · · · sλn(c(n)−d(n)) · · · sλ2n−1(c(1)−c(2)) .

3.2. Proof of Theorem 1. It will be convenient to work with the element
P

(n)
w ∈ Λ⊗2n−1 defined by

P (n)
w =

∑

λ

c
(n)
w,λ sλ1 ⊗ · · · ⊗ sλ2n−1 .

Theorem 1 is a consequence of Fomin and Greene’s formula for stable Schubert
polynomials combined with the following result.

Theorem 3. For w ∈ Sn+1 we have

P (n)
w =

∑

u1...u2n−1=w

Fu1
⊗ · · · ⊗ Fu2n−1

,

where the sum is over all reduced factorizations w = u1 · · ·u2n−1 such that ui ∈
Smin(i,2n−i)+1 for each i.
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Proof. Since rw(p, q) + m = r1m×w(p + m, q + m) for m ≥ 0, it follows that the

coefficients c
(n)
w,λ are uniquely defined by the condition that

(7) S1m×w(c; d) =
∑

λ

c
(n)
w,λ sλ1(d(2 +m)− d(1 +m)) · · ·

sλn(c(n+m)− d(n+m)) · · · sλ2n−1(c(1 +m)− c(2 +m))

for all m > 0 (see also [B, §4]).

Given any two integers p 6 q we let P
(n)
w [p, q] denote the sum of the terms of

P
(n)
w for which λi is empty when i < p or i > q:

P (n)
w [p, q] =

∑

λ:λi=∅ for i6∈[p,q]

c
(n)
w,λ sλ1 ⊗ · · · ⊗ sλ2n−1 .

Lemma 1. For any 1 < i 6 2n− 1 we have

(8) P (n)
w =

∑

u·v=w

P (n)
u [1, i− 1] · P (n)

v [i, 2n− 1] .

Proof. We will do the case i 6 n; the other one is similar. For f =
∑

cλsλ1 ⊗ · · · ⊗
sλ2N−1 ∈ Λ⊗2N−1, we set

f(c; d) =
∑

cλ sλ1(d(2)− d(1)) · · · sλN (c(N)− d(N)) · · · sλ2N−1(c(1)− c(2)) .

Equation (7) implies that P
(n)
w ∈ Λ⊗2n−1 is the unique element satisfying the

condition that (1⊗m ⊗ P
(n)
w ⊗ 1⊗m)(c; d) = S1m×w(c; d) for all m. This uniqueness

is preserved even if we set d(i + m) = 0. The right hand side of the identity (8)
satisfies this by equation (3) applied to 1m × w. ¤

Lemma 2. For 1 6 i 6 2n− 1 we have

P (n)
w [i, i] =

{
1⊗i−1 ⊗ Fw ⊗ 1⊗2n−1−i if w ∈ Sm+1, m = min(i, 2n− i)

0 otherwise.

Proof. If w 6∈ Sm+1 then this follows from Proposition 1, so assume w ∈ Sm+1. For
simplicity we will furthermore assume that m = i. We have that

P (m)
w [m,m] =

∑

α

c(m)
w,α 1⊗m−1 ⊗ sα ⊗ 1⊗m−1 ,

the sum over partitions α (which are identified with sequences where α is surrounded
by empty partitions). According to [B, Cor. 4.1], the quiver coefficients in the above

formula satisfy c
(m)
w,α = dwα, where dwα is the integer defined in §2.2. It follows that

P
(m)
w [m,m] = 1⊗m−1 ⊗ Fw ⊗ 1⊗m−1.
Let Φ : Λ⊗2m−1 → Λ⊗2n−1 be the linear map given by

Φ(sλ1 ⊗ · · · ⊗ sλ2m−1) = sλ1 ⊗ · · · ⊗ sλm−1 ⊗∆2n−2m(sλm)⊗ sλm+1 ⊗ · · · ⊗ sλ2m−1

where ∆2n−2m : Λ→ Λ⊗2n−2m+1 denotes the (2n− 2m)-fold coproduct, that is

∆2n−2m(sλm) =
∑

τ1,...,τ2n−2m+1

Nλm

τ1,...,τ2n−2m+1
sτ1 ⊗ · · · ⊗ sτ2n−2m+1

where Nλm

τ1,...,τ2n−2m+1
is the coefficient of sλm in the product sτ1sτ2 · · · sτ2n−2m+1

.

In the definition of the locus Ωw(G• → F•), the bundles Fi and Gi for i > m + 1
are inessential in the sense of §3.1, and we deduce from the remarks there that



8 ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, AND ALEXANDER YONG

Φ(P
(m)
w ) = P

(n)
w . Now the result follows from the identity P

(n)
w [m, 2n − m] =

Φ(P
(m)
w [m,m]) = 1⊗m−1 ⊗∆2n−2m(Fw)⊗ 1⊗m−1. ¤

Theorem 3 follows immediately from lemmas 1 and 2. ¤

Example 1. For the permutation w = s2s1 = 312 in S3, the sequences of tableaux
which satisfy the conditions of Theorem 1 are

( ∅ ,
1
2 , ∅ ) and ( ∅ , 2 , 1 ) .

It follows that

S312(c; d) = s2(c(2)− d(2)) + s1(c(2)− d(2))s1(c(1)− c(2))

= c1(1)c1(2)− c1(1)d1(2)− c2(2) + d2(2) .

In [BF], a conjectural combinatorial rule for general quiver coefficients cλ(r) was
given. Although this rule was also stated in terms of sequences of semistandard
tableaux satisfying certain conditions, it is different from Theorem 1 in the case
of universal Schubert polynomials. It would be interesting to find a bijection that
establishes the equivalence of these two rules.

3.3. Skipping bundles. A permutation w has a descent position at i if w(i) >
w(i+1). We say that a sequence {ak} : a1 < · · · < ap of integers is compatible with
w if all descent positions of w are contained in {ak}. Suppose that w ∈ Sn+1 and
let 1 6 a1 < a2 < · · · < ap 6 n and 1 6 b1 < b2 < · · · < bq 6 n be two sequences
compatible with w and w−1, respectively.

We let E• denote the subsequence

Gb1 → Gb2 → · · · → Gbq
→ Fap

→ · · · → Fa2
→ Fa1

,

and define rank conditions r̃(n) = {r̃
(n)
ij } for 1 6 i 6 j 6 p+ q by

r̃
(n)
ij =





rw(ap+q+1−j , bi) if i 6 q < j

bi if j 6 q

ap+q+1−j if i > q + 1

Then the expected codimension of the locus Ωr̃(n)(E•) is equal to `(w). However,
in general this locus may contain Ωw(G• → F•) as a proper closed subset. We will
need the following criterion for equality (see also the remarks in [F3, §3] and [F2,
§10, Exercise 10].)

Lemma 3. Suppose that the map Gi−1 → Gi is injective for i 6∈ {bk} and the
map Fi → Fi−1 is surjective for i 6∈ {ak}. Then Ωr̃(n)(E•) = Ωw(G• → F•) as
subschemes of X.

Proof. Let 1 6 i, j 6 n be given. If i is not a descent position for w then either
w(i) 6 j or w(i+1) > j. In the first case this implies that rw(i, j) = rw(i−1, j)+1 so
the condition rank(Gj → Fi) 6 rw(i, j) follows from rank(Gj → Fi−1) 6 rw(i−1, j)
because the map Fi → Fi−1 is surjective. In the second case we have rw(i, j) =
rw(i+1, j) so the rank condition on Gj → Fi follows from the one on Gj → Fi+1. A
similar argument works if w−1 does not have a descent at position j. We conclude
that the locus Ωw(G• → F•) does not change if the bundles Gj for j 6∈ {bk} and Fi

for i 6∈ {ak} are disregarded. ¤
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Corollary 2. Let w ∈ Sn+1 and {ak} and {bk} be as above. Then we have

[Ωr̃(n)(E•)] =
∑

µ
c̃(n)
w,µ sµ1(Gb2 −Gb1) · · · sµq (Fap

−Gbq
) · · · sµp+q−1(Fa1

− Fa2
)

with coefficients c̃
(n)
w,µ = c

(n)
w,λ where the sequence λ = (λ1, . . . , λ2n−1) is given by

λi =





µk if i = bk+1 − 1

µq if i = n

µp+q−k if i = 2n+ 1− ak+1

∅ otherwise.

Proof. We may assume that Fi = Fi−1 ⊕ C when i 6∈ {ak} and Gj = Gj−1 ⊕ C
when j 6∈ {bk}. In this case, notice that sα(Fi − Fi−1) is non-zero only when α is
the empty partition or when i = ak for some k. Similarly sα(Gi−1 − Gi) is zero
unless α is empty or i = bk for some k. The result therefore follows from Lemma 3
and equation (6). ¤

4. Schubert polynomials

4.1. Degeneracy loci. In this section, we will interpret the previous results for
ordinary double Schubert polynomials. Let V be a vector bundle of rank n and let

G1 ⊂ G2 ⊂ · · · ⊂ Gn−1 ⊂ V ³ Fn−1 ³ · · ·³ F2 ³ F1

be a complete flag followed by a dual complete flag of V . If w ∈ Sn then Fulton
has proved [F1] that

[Ωw(G• → F•)] = Sw(x1, . . . , xn; y1, . . . , yn)

where xi = c1(ker(Fi → Fi−1)), yi = c1(Gi/Gi−1), and Sw(X;Y ) is the double
Schubert polynomial of Lascoux and Schützenberger.

Set G′i = V/Gi and F ′i = ker(V → Fi). Then we have a sequence

F ′n−1 ⊂ · · · ⊂ F ′1 ⊂ V ³ G′1 ³ · · ·³ G′n−1

and it is easy to check that Ωw(G• → F•) = Ωw0w−1w0
(F ′

•
→ G′

•
) as subschemes of

X, where w0 is the longest permutation in Sn.
Let 1 6 a1 < · · · < ap 6 n − 1 and 0 6 b1 < · · · < bq 6 n− 1 be two sequences

compatible with w and w−1, respectively. Then by applying section 3.3 to the
subsequence F ′ap

→ · · · → F ′a1
→ G′b1 → · · · → G′bq

we obtain

[Ωw(G• → F•)] =
∑

µ

c̃
(n−1)
w0w−1w0,µ

sµ1(F ′ap−1
− F ′ap

) · · · sµp(G′b1 − F ′a1
) · · · sµp+q−1(G′bq

−G′bq−1
) .

Set a0 = b0 = 0. If we let Xi = {xai−1+1, . . . , xai
} denote the Chern roots of

ker(Fai
→ Fai−1

) and Yi = {ybi−1+1, . . . , ybi
} be the Chern roots of Gbi

/Gbi−1
then

the previous equality can be written as

(9) Sw(X;Y ) =
∑

µ

c̃
(n−1)
w0w−1w0,µ

sµ1(Xp) · · · sµp(X1/Y1) · · · sµp+q−1(0/Yq) .

This equation is true in the cohomology ring H∗(X;Z), in which there are rela-
tions between the variables xi and yi (including e.g. the relations ej(x1, . . . , xn) =
cj(V ) = ej(y1, . . . , yn) for 1 6 j 6 n). We claim, however, that (9) holds as an
identity of polynomials in independent variables. For this, notice that the identity
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is independent of n, i.e. the coefficient c̃
(n−1)
w0w−1w0,µ

does not change when n is re-

placed with n+1 and w0 is replaced with the longest element in Sn+1. If we choose
n sufficiently large, we can construct a variety X on which (9) is true, and where
all monomials in the variables xi and yi of total degree at most `(w) are linearly
independent, which establishes the claim.

4.2. Splitting Schubert polynomials. We continue by reformulating equation
(9) to obtain a more natural expression for double Schubert polynomials.

It follows from (9) together with the main result of [B] that Fw0w−1w0
= Fw.

Therefore, the coefficient dwα of the Schur expansion of Fw is equal to the number
of semistandard tableaux of shape α′ such that the column word is a reduced word
for w0w

−1w0. Notice that if e = (e1, e2, . . . , e`) is a reduced word for w0w
−1w0

then ẽ = (n+1−e`, . . . , n+1−e1) is a reduced word for w. Furthermore, if e is the
column word of a tableau of shape α′, then ẽ is the column word of a skew tableau
whose shape is the 180 degree rotation of α′. If we denote this rotated shape by α̃
then we conclude that dwα is also equal to the number of skew tableaux of shape
α̃ such that the column word is a reduced word for w. Theorem 3 now implies the
following variation of our main theorem:

Theorem 1′. If w ∈ Sn+1 then the coefficient c
(n)
w,λ equals the number of sequences

of semistandard skew tableaux (T1, . . . , T2n−1) such that Ti has shape λ̃
i, the entries

of Ti are at most min(i, 2n− i), and col(T1) · · · col(T2n−1) is a reduced word for w.

We say that a sequence of tableaux (T1, . . . , Tr) is strictly bounded below by an
integer sequence (a1, . . . , ar) if the entries of Ti are strictly greater than ai, for
each i.

Theorem 4. Let w ∈ Sn and let 1 6 a1 < · · · < ap and 0 6 b1 < · · · < bq be two
sequences compatible with w and w−1, respectively. Then we have

(10) Sw(X;Y ) =
∑

λ

cλ sλ1(0/Yq) · · · sλq (X1/Y1) · · · sλp+q−1(Xp),

where Xi = {xai−1+1, . . . , xai
} and Yi = {ybi−1+1, . . . , ybi

} and the sum is over
all sequences of partitions λ = (λ1, . . . , λp+q−1). Each cλ is a quiver coefficient,
equal to the number of sequences of semistandard tableaux (T1, . . . , Tp+q−1) strictly
bounded below by (bq−1, . . . , b1, 0, a1, a2, . . . , ap−1), such that the shape of Ti is con-
jugate to λi and col(T1) · · · col(Tp+q−1) is a reduced word for w.

Proof. This follows from equation (9) together with Theorem 1′ applied to
w0w

−1w0. To translate between the sequences of skew tableaux in Theorem 1′

and the sequences in the present theorem, simply rotate a whole sequence of skew
tableaux by 180 degrees (this means invert the order of the sequence, and turn each
skew tableau on its head). Then replace each entry e with n+ 1− e.

A purely algebraic proof of the splitting formula (10) is also possible. This
requires versions of the results of Section 2.1 for ordinary Schubert polynomials,
available e.g. from [L2] and [FK], together with [FG, Thm. 1.2]. However, some
geometric reasoning is needed to interpret the cλ as quiver coefficients. ¤

Notice that if one takes b1 = 0 in Theorem 4 then the set of variables Y1 is
empty, so equation (10) contains only signed products of single Schur polynomials.
Observe also that a factor sλi(0/Yk) in (10) will vanish if λi has more than bk−bk−1
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columns and that sλi(Xk) vanishes if λ
i has more than ak − ak−1 rows. Therefore

equation (10) uses only a subset of the quiver coefficients of Theorem 4.

Example 2. Let w = 321 be the longest element in S3, and choose the sequences
{ai} = {bi} = {1 < 2}. Then the four sequences of tableaux satisfying the condi-
tions of Theorem 4 are

( 2 , 1 , 2 ) , ( 2 , 1 2 , ∅ ) , ( ∅ ,
1
2 , 2 ) , and ( ∅ ,

1
2

2
, ∅ ) ,

all of which give nonvanishing terms and correspond to the reduced word s2s1s2.
We thus have

S321(X;Y ) =

s1(0/y2)s1(x1/y1)s1(x2) + s1(0/y2)s1,1(x1/y1) + s2(x1/y1)s1(x2) + s2,1(x1/y1)

= −y2(x1 − y1)x2 − y2(y
2
1 − x1y1) + (x2

1 − x1y1)x2 + (x1y
2
1 − x2

1y1)

= (x1 − y1)(x1 − y2)(x2 − y1) .

Corollary 3. Suppose that w ∈ Sn is a permutation compatible with the sequence
a1 < · · · < ap. Then we have

Sw(X) =
∑

λ

cλ sλ1(X1) · · · sλp(Xp)

where Xi = {xai−1+1, . . . , xai
} and the sum is over all sequences of partitions λ =

(λ1, . . . , λp). Each cλ is a quiver coefficient, equal to the number of sequences of
semistandard tableaux (T1, . . . , Tp) strictly bounded below by (0, a1, a2, . . . , ap−1),
such that the shape of Ti is conjugate to λ

i and col(T1) · · · col(Tp) is a reduced word
for w.

Example 3. Consider the permutation w = s1s2s1s3s4s3 = 32541 in S5, with
descent positions at 1, 3, and 4. The two sequences of tableaux satisfying the
conditions of Corollary 3 which give nonvanishing terms are

(
4
2
1

, 2 3 , 4 ) and (
1
2 ,

2
4

3
, 4 ) .

The reduced words for w corresponding to these sequences are s4s2s1s2s3s4 and
s2s1s4s2s3s4, respectively. It follows that

S32541(X) = s3(x1)s1,1(x2, x3)s1(x4) + s2(x1)s2,1(x2, x3)s1(x4)

= x3
1 · x2x3 · x4 + x2

1(x
2
2x3 + x2

3x2)x4.

The special case of Corollary 3 with ak = k gives a formula for the coefficient of
each monomial in Sw(X) which is equivalent to that of [BJS, Thm. 1.1]. We deduce
that these monomial coefficients are quiver coefficients. The same conclusion holds
for double Schubert polynomials:

Corollary 4. Let w ∈ Sn and let x
uyv = xu1

1 · · ·x
un−1

n−1 yv1
1 · · · y

vn−1

n−1 be a monomial

of total degree `(w). Set gi =
∑n−1

k=n−i vk and fi = gn−1 +
∑i

k=1 uk. Then the
coefficient of xuyv in the double Schubert polynomial Sw(X;Y ) is equal to (−1)gn−1

times the number of reduced words (e1, . . . , e`(w)) for w such that n− i 6 egi−1+1 <
· · · < egi

and efi−1+1 > · · · > efi
> i for all 1 6 i 6 n− 1.
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Proof. Take {ak} = {1, 2, . . . , n − 1} and {bk} = {0, 1, 2, . . . , n − 1} in Theorem
4 and notice that a Schur polynomial sα(0/yi) is non-zero only if α = (1vi) is a
single column with vi boxes, in which case sα(0/yi) = (−yi)

vi . Similarly sα(xi) is
equal to xui

i if α = (ui) is a single row with ui boxes, and is zero otherwise. The
reduced words of the corollary are exactly those that form a sequence of tableaux
on the conjugates of these shapes and are strictly bounded below by (n − 2, n −
3, . . . , 1, 0, 0, 1, . . . , n− 2). ¤

Remark. Corollary 3 implies that the single Schubert polynomial Sw(X) is the
character of a GL(a1,C) × GL(a2 − a1,C) × · · · × GL(ap − ap−1,C) module. Our
expression for the coefficients cλ gives an isotypic decomposition of this module.
This is closely related to a theorem of Kraskiewicz and Pragacz [KP], which shows
that Sw(X) is a character of a Borel module. P. Magyar reports that the former
property may be deduced from the latter (private communication). We note that
alternative positive expressions for the cλ may be deduced from [LS2, (1.5)] and
[BS, Cor. 1.2].

5. Giambelli formulas

In this final section, we observe that Corollaries 2 and 3 give explicit, non-
recursive answers to the Giambelli problem for the classical and quantum cohomol-
ogy of partial flag manifolds.

Suppose that V is a complex vector space of dimension n and choose integers
0 = a0 < a1 < · · · < ap < ap+1 = n. Let X be the partial flag variety which
parametrizes quotients

(11) V ³ Fap
³ · · ·³ Fa1

with rank(Fak
) = ak for each k. We will also use (11) to denote the tautological

sequence of quotient bundles over X, and define Qk = Ker(Fak
→ Fak−1

), for
1 6 k 6 p+1. According to Borel [Bo], the cohomology ring H∗(X;Z) is presented
as the polynomial ring in the Chern classes ci(Qk) for all i and k, modulo the
relation

c(Q1)c(Q2) · · · c(Qp+1) = 1 .

Fix a complete flag G• of subspaces of V , and let S(a) denote the subset of Sn

consisting of permutations w compatible with {ak}. For each w ∈ S(a), there is a
Schubert variety Ωw ⊂ X, defined as the locus of x ∈ X such that

rank(Gj(x)→ Fi(x)) 6 rw(i, j), for i ∈ {a1, . . . ap} and 1 6 j 6 n.

The Schubert classes [Ωw] ∈ H2`(w)(X;Z) for w ∈ S(a) form a natural ‘geometric
basis’ for the cohomology ring of X. The following Giambelli formula, which is
a direct consequence of Corollary 3, writes these classes as polynomials in the
‘algebraic generators’ for H∗(X;Z) given by the ci(Qk).

Giambelli I. We have

(12) [Ωw] =
∑

λ

cλ sλ1(Q1) · · · sλp(Qp),

where the sum is over sequences of partitions λ = (λ1, . . . , λp) and cλ is the quiver
coefficient of Corollary 3.
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Alternatively, we can use Corollary 2 to express the Schubert class [Ωw] as a
polynomial in the special Schubert classes ci(Fak

). Notice that the two approaches
are identical for Grassmannians.

Giambelli II. We have

(13) [Ωw] =
∑

ν

c̃ν sνp(Fap
) sνp−1(Fap−1

− Fap
) · · · sν1(Fa1

− Fa2
) ,

where the sum is over sequences of partitions ν = (ν1, . . . , νp) and c̃ν = c
(n−1)
w,λ ,

where λ = (λ1, . . . , λ2n−3) is given by

λi =

{
νk if i = 2n− 1− ak+1

∅ otherwise.

When comparing the above two Giambelli formulas, recall that the the quiver
coefficients cλ which appear in (12) correspond to the permutation w0w

−1w0. The
equivalence of (12) and (13) can also be checked directly, by using the Chern class
identities c(Qk) = c(Fak

− Fak−1
). See [LS1] and [So] for a Pieri formula for flag

manifolds which complements Giambelli II.
Following [FGP] and [C-F, §3.2], we recall that equation (13) can be used to

obtain a quantum Giambelli formula which holds in the small quantum cohomology
ring QH∗(X). For this, one simply replaces all the special Schubert classes which
appear in the Schur determinants sνk(Fak

− Fak+1
) in (13) with the corresponding

quantum classes, as in loc. cit. (compare also with [F3, Prop. 4.3]).
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