Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 10 – Due November 20, 2025

A1) Let R be a commutative ring and suppose I is an ideal of R. The radical of I, denoted rad(I) or \sqrt{I} , is defined by

$$rad(I) := \{ x \in R \mid x^n \in I \text{ for some } n \ge 1 \}.$$

- (a) Prove that rad(I) is an ideal of R which contains I.
- (b) Prove that rad(rad(I)) = rad(I).
- (c) An ideal I of R is a radical ideal if $\operatorname{rad}(I) = I$. Prove that every prime ideal is a radical ideal. Find a necessary and sufficient condition on the natural number n so that $n\mathbb{Z}$ is a radical ideal of \mathbb{Z} .
- **A2)** A commutative ring is called a *local* ring when it has but one maximal ideal. Consider the characteristic homomorphism $\chi : \mathbb{Z} \to R$, where R is a local ring, and suppose that the characteristic of R is not 0, i.e. $\text{Ker}\chi \neq (0)$. Show that $\text{Ker}\chi = (q^n)$ for some prime number q and integer n.
- **A3)** Let p be a prime number and let F be the field $\mathbb{Z}/p\mathbb{Z}$. Prove that the polynomial ring A[x] has infinitely many maximal ideals.
- **A4)** Suppose that f(x) is a polynomial of degree 2 with real coefficients. Prove that the quotient ring $\mathbb{R}[x]/(f(x))$ is isomorphic to one of the following: (i) \mathbb{C} , (ii) $\mathbb{R} \times \mathbb{R}$, or (iii) the ring $\mathbb{R}[x]/(x^2)$.
- **B1)** Let A be a commutative ring. Consider all infinite sequences $\{a_i\}_{i=0}^{\infty}$, with the $a_i \in A$; add these termwise and multiply by the rule: $\{a_i\}\{b_j\} = \{c_k\}$, where $c_k = \sum_{i=0}^{k} a_i b_{k-i}$. This makes a commutative ring. If x denotes the sequence $(0, 1, 0, 0, \ldots)$, we can identify our sequence ring with the ring of formal power series $\sum_{j=0}^{\infty} a_j x^j$ in the indeterminant x with coefficients in A. Denote this ring by A[[x]].
- (a) Write f for a formal power series $\sum_{j=0}^{\infty} a_j x^j$ and write f(0) for the constant term, a_0 , of f. Prove that the map $\Phi(f) = f(0)$ is a surjective ring homomorphism $A[[x]] \to A$.
- (b) Show that if f(0) is a unit of A, then f is a unit of A[[x]].
- (c) Deduce that A is a local ring if and only if A[[x]] is local. Prove that the rings A and A[[x]] have the same characteristic.
- (d) Prove: if A is an integral domain then so is A[[x]].

(e) Let K be a field. Define K((x)) to be the ring of formal power series in X (with coefficients in K) which involve as well a *finite* number of negative

powers of x; i.e. of the form $\sum_{j\geq k}^{\infty} a_j x^j$ for some $k\in\mathbb{Z}$ (this is the ring of

formal Laurent series.) Prove that K((x)) is the quotient field of K[[x]].

- (f) If A is a domain with quotient field K, it is not necessarily true that K((x)) is the quotient field of A[[x]]. For example, show that the quotient field of the power series ring $\mathbb{Z}[[x]]$ is properly contained in the field of Laurent series $\mathbb{Q}((x))$. [Hint: Consider the series for e^x .]
- **B2)** Let $R := \mathbb{R}[\sin x, \cos x]$ be the ring of *trigonometric polynomials*, generated over the reals by the functions $\sin x$ and $\cos x$.
- (a) Show that R consists of all functions $f: \mathbb{R} \to \mathbb{R}$ which satisfy

(1)
$$f(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$

for some real numbers a_0 , a_k , b_k and integer $n \geq 0$. Integrating f(x), $f(x)\cos(kx)$, and $f(x)\sin(kx)$ on $[0,2\pi]$ proves that the coefficients in (1) are uniquely determined by the function f.

- (b) The trigonometric degree $\deg_{\mathrm{tr}}(f)$ of a non-zero trigonometric polynomial is defined as the largest value of k for which a_k and b_k in (1) are not both zero. Prove that $\deg_{\mathrm{tr}}(fg) = \deg_{\mathrm{tr}}(f) + \deg_{\mathrm{tr}}(g)$.
- (c) Show that R is an integral domain, and determine the units in R. Prove that all elements of degree 1 in R are irreducible. Finally, deduce from the identity

$$\sin^2 x = (1 + \cos x)(1 - \cos x)$$

that R is not a unique factorization domain.

- **B3)** If R is any ring, not necessarily commutative, write J(R) for the intersection of all the maximal ideals of R.
- (a) Show that J(R) is a two-sided ideal in R. Also show that if $x \in J(R)$, then 1-x is a unit in R.
- (b) Suppose that I is a two-sided ideal of R and J(R/I)=(0). Show that $J(R)\subset I$.
- (c) Suppose $\phi: R \to S$ is a surjective ring homomorphism. Show that $\phi(J(R)) \subset J(S)$. If, in addition, $\operatorname{Ker} \phi \subset J(R)$, show that $\phi(J(R)) = J(S)$.
- (d) Deduce that J(R/J(R)) = (0). Let F be any field, and compute R/J(R) in each of the following two cases: (i) $R = M_n(F)$ and (ii) $R \subset M_n(F)$ the ring of upper triangular matrices in $M_n(F)$. This means, give a cogent description of the ring R/J(R) which does not involve cosets.