Math 660 - Spring 2024 - Harry Tamvakis PROBLEM SET 10 - Due April 25, 2024

1) Let $D=D(0,1)$ be the unit disk in \mathbb{C} and $f \in \mathcal{O}(D)$. Suppose that $|\operatorname{Im} f(z)|<\pi / 2$ for all $z \in D$, and that $f(0)=0$. Prove that $\left|f^{\prime}(0)\right| \leq 2$.
[Hint: Consider the function $g(z)=\frac{e^{f(z)}-1}{e^{f(z)}+1}$.]
2) Let Ω be a convex open set in \mathbb{C} and $f: D(0,1) \rightarrow \Omega$ be a biholomorphic map. For each real number r with $0<r<1$, prove that $f(D(0, r))$ is convex.
[Hint: Assume that $f(0)=0$, and for all $a, b \in D(0,1)$ with $|a| \leq|b|<$ 1 and $b \neq 0$, consider $f^{-1}\left((1-t) \cdot f\left(a b^{-1} z\right)+t \cdot f(z)\right)$.]
3) Exercise 310 in the textbook.
4) Exercise 313 in the textbook.
5) Exercise 315 in the textbook.

Extra Credit Problem.

EC) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that for each fixed $x \in \mathbb{R}$, $y \mapsto f(x, y)$ is a polynomial in y, and for each fixed $y \in \mathbb{R}, x \mapsto f(x, y)$ is a polynomial in x. Prove that $f \in \mathbb{R}[x, y]$, i.e., that $f(x, y)$ is a polynomial in two variables.

Remark. If \mathbb{R} is replaced by \mathbb{C}, the result follows immediately from Hartogs' theorem on separate analyticity, which was mentioned in the lectures without proof. Find a more elementary proof that works over \mathbb{R} or \mathbb{C}.

