Math 660 – Spring 2024 – Harry Tamvakis PROBLEM SET 10 – Due April 25, 2024

1) Let D = D(0,1) be the unit disk in \mathbb{C} and $f \in \mathcal{O}(D)$. Suppose that $|\text{Im } f(z)| < \pi/2$ for all $z \in D$, and that f(0) = 0. Prove that $|f'(0)| \leq 2$.

[Hint: Consider the function $g(z) = \frac{e^{f(z)} - 1}{e^{f(z)} + 1}$.]

2) Let Ω be a convex open set in \mathbb{C} and $f : D(0,1) \to \Omega$ be a biholomorphic map. For each real number r with 0 < r < 1, prove that f(D(0,r)) is convex.

[Hint: Assume that f(0) = 0, and for all $a, b \in D(0, 1)$ with $|a| \le |b| < 1$ and $b \ne 0$, consider $f^{-1}((1-t) \cdot f(ab^{-1}z) + t \cdot f(z))$.]

- **3)** Exercise 310 in the textbook.
- 4) Exercise 313 in the textbook.
- 5) Exercise 315 in the textbook.

Extra Credit Problem.

EC) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that for each fixed $x \in \mathbb{R}$, $y \mapsto f(x, y)$ is a polynomial in y, and for each fixed $y \in \mathbb{R}$, $x \mapsto f(x, y)$ is a polynomial in x. Prove that $f \in \mathbb{R}[x, y]$, i.e., that f(x, y) is a polynomial in two variables.

<u>Remark.</u> If \mathbb{R} is replaced by \mathbb{C} , the result follows immediately from Hartogs' theorem on separate analyticity, which was mentioned in the lectures without proof. Find a more elementary proof that works over \mathbb{R} or \mathbb{C} .