Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 12 – Due December 11, 2025

- **A1)** Let A be a commutative ring and $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules. Prove that if M' and M'' are finitely generated, then M is finitely generated.
- **A2)** Let F be a field and $A := F[x_1, x_2, \ldots]$ be the ring of polynomials in a countably infinite set of variables x_i , $i \ge 1$. Let I be the ideal (x_1, x_2, \ldots) of A, and set M := A and M' := I. Prove that M is a finitely generated A-module but M' is a submodule of M that is not finitely generated. Is M' a free A-module?
- **A3)** Let A be a commutative ring. Suppose that M_1 , M_2 , and N are submodules of an A-module M such that $M_1 \subset M_2$. Show that there is an exact sequence of A-modules

$$0 \to (M_2 \cap N)/(M_1 \cap N) \to M_2/M_1 \to (M_2 + N)/(M_1 + N) \to 0.$$

- **A4)** (a) Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as \mathbb{R} -modules.
- (b) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as \mathbb{Q} -modules.
- **A5)** Let V be a finite dimensional vector space over a field F. Prove that $v \otimes w = v' \otimes w' \neq 0$ in $V \otimes_F V$ if and only if $v = \lambda v'$ and $w' = \lambda w$ for some non-zero scalar $\lambda \in F$.
- **A6**) Let $f: A \to B$ be a ring homomorphism, let M be an A-module and N be a B-module. Let N_A be the A-module obtained from N by restriction of scalars, so that the operation of A on N is given by $(a, n) \mapsto f(a)n$. Show that there is a natural isomorphism

$$\operatorname{Hom}_B(B \otimes_A M, N) \cong \operatorname{Hom}_A(M, N_A).$$

- **B1)** Let I be an ideal in $\mathbb{C}[x_1,\ldots,x_n]$. Prove that V(I) is a finite set if and only if $\mathbb{C}[x_1,\ldots,x_n]/I$ is a finite dimensional complex vector space. If this occurs, show that the number of points in V(I) is at most equal to the dimension of this vector space.
- **B2)** An irreducible algebraic set V in $\mathbb{A}^n(\mathbb{C})$ is called an *affine algebraic* variety. The quotient ring $\Gamma(V) := \mathbb{C}[x_1,\ldots,x_n]/I(V)$ is the ring of polynomial functions on V, because two polynomials $p,q\in\mathbb{C}[x_1,\ldots,x_n]$ define the same function on V if and only if $p-q\in I(V)$. The ring $\Gamma(V)$ is a \mathbb{C} -algebra a commutative ring which contains \mathbb{C} as a subring.

- (a) To each point $x \in V$, associate the ideal m_x of all $f \in \Gamma(V)$ such that f(x) = 0. Prove that this defines a bijection between the points of V and the set of maximal ideals of $\Gamma(V)$.
- (b) A polynomial map $\phi: \mathbb{A}^n \to \mathbb{A}^m$ is a function of the form $\phi(x) = (f_1(x), \ldots, f_m(x))$ where $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n]$. If V and W are affine algebraic varieties in \mathbb{A}^n and \mathbb{A}^m , respectively, a map $\phi: V \to W$ is said to be regular if ϕ is the restriction of a polynomial map $\mathbb{A}^n \to \mathbb{A}^m$ to V. If f is a polynomial function on W, then $f \circ \phi$ is a polynomial function on V. The induced map $\Gamma(W) \to \Gamma(V)$ sending f to $f \circ \phi$ is a \mathbb{C} -algebra homomorphism a ring homomorphism which is also a linear map of \mathbb{C} -vector spaces. Prove that in this way, we obtain a one-to-one correspondence between the regular maps $V \to W$ and the \mathbb{C} -algebra homomorphisms $\Gamma(W) \to \Gamma(V)$.

Extra Credit Problem

- C1) Let G be a finite group, and write c(G) for the number of distinct conjugacy classes in G. This number will increase (in general) as $|G| \to \infty$, so we introduce the quantity $\gamma(G) = \frac{c(G)}{|G|}$. The number $\gamma(G)$ is a conjugacy class 'density' (it measures the average number of conjugacy classes per element of G). Clearly, $0 < \gamma(G) \le 1$, and we have $\gamma(G) = 1$ if and only if G is abelian. From now on assume that G is non-abelian.
- (a) Prove that $\gamma(G) \leq \frac{5}{8}$ for every non-abelian group G.
- (b) If p is the smallest prime dividing |G|, prove that $\gamma(G) \leq \frac{1}{p} + \frac{1}{p^2} \frac{1}{p^3}$.
- (c) Is the bound of part (a) sharp? That is, can you find a group G with $\gamma(G)=\frac{5}{8}$? How about the bound of part (b) for groups whose orders are divisible by p?