Math 660 - Spring 2024 - Harry Tamvakis PROBLEM SET 12 - Due May 9, 2024

1) The degree of a non-constant holomorphic map between two compact Riemann surfaces is defined to be the number of sheets of the associated branched covering map. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are non-constant holomorphic maps between compact Riemann surfaces, prove that the degree of $g \circ f$ is equal to $\operatorname{deg}(f) \operatorname{deg}(g)$.
2) Let X be a compact Riemann surface and let $\sigma: X \rightarrow X$ be a biholomorphic map of X onto itself, different from the identity. Let $a \in X$ be a point with $\sigma(a) \neq a$, and suppose that there is a nonconstant meromorphic function f on X, holomorphic on $X \backslash\{a\}$, with a pole of order k at a. Prove that σ can have at most $2 k$ fixed points on X.
3) If f and g are two elliptic functions with respect to the same lattice $\Omega \subset \mathbb{C}$, prove that there exists an irreducible polynomial $P(x, y) \in$ $\mathbb{C}[x, y]$ such that $P(f, g)=0$.
4) For any complex number a not in the lattice Ω, prove that

$$
\wp(z)-\wp(a)=-\frac{\sigma(z-a) \sigma(z+a)}{\sigma^{2}(z) \sigma^{2}(a)} .
$$

5) Prove that

$$
\wp^{\prime}(z)=\frac{2 \sigma\left(z-\frac{\omega_{1}}{2}\right) \sigma\left(z-\frac{\omega_{2}}{2}\right) \sigma\left(z+\frac{\omega_{3}}{2}\right)}{\sigma\left(\frac{\omega_{1}}{2}\right) \sigma\left(\frac{\omega_{2}}{2}\right) \sigma\left(-\frac{\omega_{3}}{2}\right) \sigma(z)^{3}} .
$$

Extra Credit Problems.

Let $\Omega \subset \mathbb{C}$ be a lattice and $\wp(z)$ the associated Weierstrass $\wp-$ function. We have seen that $\wp(z)$ satisfies the differential equation $\left(\wp^{\prime}(z)\right)^{2}=p(\wp(z))$, where $p(x)=4 x^{3}-g_{2} x-g_{3}$. The following three problems examine the conditions under which the coefficients g_{2} and g_{3} of $p(x)$ are real numbers.

EC1) Prove that the following conditions are equivalent: (i) $g_{2}, g_{3} \in \mathbb{R}$; (ii) $G_{k} \in \mathbb{R}$ for all $k \geq 3$; (iii) $\wp(\bar{z})=\overline{\wp(z)}$ for all $z \in \mathbb{C}$; (iv) $\bar{\Omega}=\Omega$ (the last condition says that Ω is a real lattice).

EC2) We say that Ω is real rectangular if $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ where $\omega_{1} \in \mathbb{R}$ and $\omega_{2} \in i \mathbb{R}$, and that Ω is real rhombic if $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ where $\omega_{2}=\bar{\omega}_{1}$. Prove that a lattice Ω is real if and only if it is real rectangular or real rhombic.

EC3) Let Ω be a real lattice. Define the real elliptic curve $E_{\mathbb{R}}$ to be the set $\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=p(x)\right\}$. Prove that $E_{\mathbb{R}}$ has one or two connected components as Ω is real rhombic or real rectangular, respectively.

