Math 660 - Spring 2024 - Harry Tamvakis

PROBLEM SET 3 - Due February 22, 2024

1) Exercise 96 from the textbook.
2) Exercise 113 from the textbook.
3) (a) Let $D=D(a, R):=\{z \in \mathbb{C}:|z-a|<R\}$. Let $f \in \mathcal{O}(D)$, and suppose that $|f(z)| \leq M$, for all $z \in D$. Prove that if $f^{(n)}(a)=0$ for $0 \leq n<k$, then

$$
|f(z)| \leq M\left(\frac{r}{R}\right)^{k}
$$

for $|z-a| \leq r<R$.
(b) Let Ω be a connected open set in \mathbb{C} and let $H^{\infty}(\Omega)$ denote the \mathbb{C}-vector space of bounded holomorphic functions on Ω. Set $\|f\|_{\infty}:=\sup _{z \in \Omega}|f(z)|$ for $f \in H^{\infty}(\Omega)$. Prove that if $K \subset \Omega$ is compact and $\epsilon>0$, there exists a subspace $V \subset H^{\infty}(\Omega)$ of finite codimension such that

$$
|f(z)| \leq \epsilon\|f\|_{\infty}, \quad \forall z \in K, \quad \forall f \in V .
$$

4) Suppose that X and Y are connected topological manifolds.
(a) Let $p: X \rightarrow Y$ be a covering map. Suppose that there is a $y_{0} \in Y$ such that $p^{-1}\left(y_{0}\right)$ contains exactly n points, for some $n \in \mathbb{N}$. Prove that $p^{-1}(y)$ contains exactly n points for every $y \in Y$.
(b) If $p: X \rightarrow Y$ is a local homeomorphism such that there is an integer $n \geq 1$ with $\# p^{-1}(y)=n$ for all $y \in Y$, prove that p is a covering map.
(c) Let $p: X \rightarrow Y$ be a local homeomorphism and suppose that p is a proper map (i.e., that $p^{-1}(K)$ is compact for any compact set $K \subset Y$). Prove that p is a covering map.
5) (a) Prove that the germs defined by z and by $1 / z$ at $z=1$ lie in different connected components of \mathcal{O}.
(b) Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be entire functions and suppose that the germs f_{0} and g_{0} defined by f and g respectively at zero lie in the same connected component of \mathcal{O}. Prove that $f=g$.

Extra Credit Problem.

EC) (a) Let $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence of real numbers. Prove that there is a C^{∞} function f defined on an open neighborhood of 0 in \mathbb{R} such that $f^{(n)}(0)=a_{n}$ for every $n \geq 0$.
[Hint: Fix $n \geq 1, c \in \mathbb{R}$, and $\epsilon>0$. Construct a C^{∞} function φ such that $\varphi(x)=c x^{n}$ for x near 0 and such that $\sup _{x \in \mathbb{R}}\left|\varphi^{(k)}(x)\right| \leq \epsilon$ for all $k<n$. For each n, choose c and ϵ appropriately and add the resulting functions φ together.] (b) Give an example to show that the statement in part (a) is false for holomorphic functions f defined on an open neighborhood of 0 in \mathbb{C}.

