Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 4 – Due October 2, 2025

In the following problems I expect solutions that use only the material that we have covered so far in class.

A1) Let a_1, \ldots, a_n be real numbers not all zero and H denote the hyperplane in \mathbb{R}^n with equation $a_1x_1 + \cdots + a_nx_n = 0$. Prove that the distance d from a point $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$ to the hyperplane H is given by

$$d = \frac{|a_1v_1 + a_2v_2 + \dots + a_nv_n|}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}}.$$

A2) Let $\mathbb{R}[x]$ be the vector space of all polynomials with real coefficients, equipped with the inner product

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) dx.$$

- (a) Prove that there is unique orthogonal basis $\{f_n\}_{n\geq 0}$ of $\mathbb{R}[x]$ such that
 - (i) f_n has degree n for each $n \ge 0$ and (ii) $f_n(1) = 1$ for each $n \ge 0$.
- (b) Compute the polynomials f_0 , f_1 , f_2 , and f_3 .
- **A3)** Let V be a complex vector space with a hermitian inner product. Find a formula which expresses $\langle u, v \rangle$ in terms of $||u + v||^2$, $||u v||^2$, $||u + iv||^2$ and $||u iv||^2$, for any vectors $u, v \in V$.
- **B1)** Let V and W be finite dimensional complex vector spaces equipped with hermitian inner products.
- (a) If f is any linear functional in V^* , prove that there exists a *unique* vector $w \in V$ such that $f(v) = \langle v, w \rangle$ for all $v \in V$.
- (b) Deduce from (a) that there is a conjugate linear isomorphism $V \to V^*$ that does not depend on the choice of any basis of V.
- (c) Let $T:V\to W$ be a linear map. Show that there is a unique linear map $T':W\to V$ such that $\langle T(x),y\rangle=\langle x,T'(y)\rangle$ for any $x\in V$ and $y\in W$. How is the map T' related to the adjoint map $T^*:W^*\to V^*$ defined in problem A1 of last week's homework set?
- **B2)** (a) Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. In case the equation Ax = b has no solution, it is often desirable to find the next best thing, an \widehat{x} that makes $A\widehat{x}$ as close as possible to b. Call \widehat{x} a nearest solution if

$$||A\widehat{x} - b|| \leqslant ||Ax - b||$$

for all x in \mathbb{R}^n (where the norm is the usual one coming from the dot product). Prove that \widehat{x} is a nearest solution of Ax = b if and only if $A^t A \widehat{x} = A^t b$.

- (b) Show that A^tA is invertible if and only if A has linearly independent columns. In this case there is a unique nearest solution of Ax = b, namely $\hat{x} = (A^tA)^{-1}A^tb$.
- (c) Suppose that we are given points $(x_1, y_1), \ldots, (x_n, y_n)$ in the Euclidean plane \mathbb{R}^2 . A line $y = \alpha x + \beta$ passes through each point exactly when the system

$$\alpha x_i + \beta = y_i, \quad 1 \leqslant i \leqslant n$$

has a solution in α and β . If there are more than two points then this system may not have a solution. What condition on the points guarantees that there is a unique nearest solution $(\widehat{\alpha}, \widehat{\beta})$ for the system? In the latter case derive formulas for $\widehat{\alpha}$ and $\widehat{\beta}$ in terms of the x_i 's and y_i 's.

- **B3)** Let V be a finite dimensional vector space equipped with a hermitian inner product \langle , \rangle . Suppose that $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_m\}$ are two sets of m vectors in V. Prove that the following statements are equivalent.
- (a) There exists a unitary linear map $T: V \to V$ such that $T(u_i) = v_i$ for i = 1, ..., m.
- (b) The $m \times m$ matrices $\{\langle u_i, u_j \rangle\}_{1 \leq i,j \leq m}$ and $\{\langle v_i, v_j \rangle\}_{1 \leq i,j \leq m}$ are equal.
- **B4)** Let x be a unit column vector in \mathbb{R}^n .
- (a) Prove that the matrix $A := I 2xx^t$ is orthogonal.
- (b) Show that left multiplication by A is a reflection through the hyperplane $H:=\langle x\rangle^{\perp}$ which is orthogonal to x. That is, prove that if we write an arbitrary vector v in the form $v=\lambda x+y$, where $\lambda\in\mathbb{R}$ and $y\in H$, then $Av=-\lambda x+y$.
- (c) Suppose that $u, v \in \mathbb{R}^n$ are arbitrary vectors in \mathbb{R}^n of the same length. Determine a unit vector x such that Au = v.
- (d) Prove that every orthogonal $n \times n$ matrix is a product of at most n reflections.