Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 5 – Due October 9, 2025

- **A1)** Let G be a (possibly infinite) group, and suppose that we have subgroups $H \leq K \leq G$. Prove that |G:H| is finite if and only if |G:K| and |K:H| are both finite. In this case, show that $|G:H| = |G:K| \cdot |K:H|$.
- **A2)** Let $\phi: G \to G'$ be a surjective group homomorphism with kernel N. Prove that the set of subgroups H' of G' is in bijective correspondence with the set of subgroups H of G which contain N, under the map which sends H to $\phi(H)$ and H' to $\phi^{-1}(H') := \{g \in G \mid \phi(g) \in H'\}$. Show that the normal subgroups of G' correspond to normal subgroups of G.
- **A3)** (a) Let C_n denote the cyclic group of order n. Prove that the product group $C_m \times C_n$ is cyclic if and only if m and n are relatively prime.
- (b) Describe the automorphism group $Aut(C_n)$ and determine its order. Is $Aut(C_n)$ a cyclic group for all positive integers n?
- **B1)** (a) A subgroup H of a group G is *proper* if $H \neq G$. A proper subgroup H is *maximal* if it is contained in no other proper subgroup. Find all maximal proper subgroups of the additive group $(\mathbb{Z}, +)$.
- (b) A group G is *finitely generated* if there is a finite set $S \subset G$ such that $G = \langle S \rangle$, that is, the subgroup generated by S is all of G. Prove that every proper subgroup of a finitely generated group is contained in a maximal proper subgroup.
- (c) Find all maximal proper subgroups of the additive group $(\mathbb{Q}, +)$ of rational numbers, or prove that there are none.
- **B2)** Let G be a (possibly infinite) group.
- (a) Suppose that H and K are subgroups of G of finite index in G. Prove that $H \cap K$ also has finite index in G.
- (b) Prove that if G has a subgroup $H \neq G$ of finite index, then it has a normal subgroup $N \neq G$ of finite index. It follows that an infinite simple group has no subgroups of finite index.
- (c) Refine part (b) by showing that if |G:H|=k, then G has a normal subgroup $N \neq G$ with $|G:N| \leq k!$. [Hint: Construct a non-trivial homomorphism from G to the symmetric group S_k .]
- **B3)** A group G is called a *rank one group* if every finitely generated subgroup of G is cyclic. We say that G is *torsion free* if for any $x \in G$ with $x \neq 1$ and any $n \geq 1$, we have $x^n \neq 1$.
- (a) Prove that any rank one group is abelian.

- (b) Show that the additive group $(\mathbb{Q},+)$ of rational numbers is a rank one group.
- (c) Prove that every torsion-free, rank one group is isomorphic to a subgroup of the group $(\mathbb{Q}, +)$.
- **B4)** Recall that a subset A of \mathbb{R}^n is bounded if there exists an M > 0 such that $||a|| \leq M$ for all $a \in A$. Let H be a non-zero subgroup of the additive group $(\mathbb{R}^n, +)$, and assume that the intersection of H with any bounded region in \mathbb{R}^n is a finite set. Prove that H is isomorphic to $(\mathbb{Z}^m, +)$ for some integer m with $1 \leq m \leq n$. [Hint: Use induction on the maximum number of elements of H which are linearly independent vectors in \mathbb{R}^n . Do the cases n = 1 and n = 2 first, before tackling the general case.]

Extra Credit Problems

- C1) Prove or give a counterexample: if G is a group such that every proper subgroup of G is finite, then G is finite.
- **C2)** Klein's 4-group is the unique non-cyclic group of order 4. Prove that a group G is the union of three proper subgroups if and only if there is a surjective group homomorphism from G to Klein's 4-group.