Math 660 - Spring 2020 - Harry Tamvakis

PROBLEM SET 5 - Due March 7, 2024

1) Exercise 116 from the textbook.
2) Exercises 188 and 189 from the textbook.
[Hint: See Proposition 2 on page 72.]
3) It is required to expand the function

$$
f(z)=\frac{1}{1-z^{2}}+\frac{1}{5-z}
$$

into a Laurent series of the form $\sum_{n=-\infty}^{+\infty} c_{n} z^{n}$. How many such expansions are there, and in which region is each of them valid? Compute the coefficients c_{n} explicitly for each of these expansions.
4) (a) Let $\lambda \in \mathbb{C}$ and show that

$$
\exp \left\{\frac{\lambda}{2}\left(z+\frac{1}{z}\right)\right\}=a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z^{n}+\frac{1}{z^{n}}\right)
$$

for $0<|z|<\infty$, where for $n \geq 0$

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} e^{\lambda \cos t} \cos (n t) d t
$$

(b) Similarly, show that

$$
\exp \left\{\frac{\lambda}{2}\left(z-\frac{1}{z}\right)\right\}=b_{0}+\sum_{n=1}^{\infty} b_{n}\left(z^{n}+\frac{1}{z^{n}}\right)
$$

for $0<|z|<\infty$, where for $n \geq 0$

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} \cos (\lambda \sin t-n t) d t
$$

5) Let f be holomorphic in the punctured disk

$$
D^{*}=\{z \in \mathbb{C}: 0<|z|<1\}
$$

and let $d \mu=d x d y$ denote Lebesgue measure in the plane \mathbb{R}^{2}.
(a) Prove that if $\iint_{D^{*}}|f(z)|^{2} d \mu<\infty$ then f has a removable singularity at $z=0$.
(b) Suppose that $p>0$ and $\iint_{D^{*}}|f(z)|^{p} d \mu<\infty$. What can be said about the nature of the singularity at $z=0$?

