Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 6 – Due October 16, 2025

- **A1)** Let Z be the center of a group G. Prove that if G/Z is a cyclic group, then G is abelian and hence G=Z.
- **A2)** Let F be any field, and $M_{m,n}(F)$ the vector space of $m \times n$ matrices with entries in F. The group $G = \operatorname{GL}(m,F) \times \operatorname{GL}(n,F)$ acts on $M_{m,n}(F)$ by the rule $(P,Q) \cdot A = PAQ^{-1}$. Describe the decomposition of $M_{m,n}(F)$ into G-orbits under this action. Assume that $m \leq n$, and determine the stabilizer of the matrix $(I_m \mid 0)$.
- **A3)** In each of the following three cases the orthogonal group G = O(n) acts transitively by linear isometries on the given set X. Choose a convenient element $x \in X$ and find the stabilizer G_x explicitly as a subgroup of G. Conclude in each case that X can be identified with the coset space G/G_x .
- (a) $X = \{x \in \mathbb{R}^n : ||x|| = 1\}$ is the unit sphere in \mathbb{R}^n .
- (b) X is the set of one dimensional subspaces of \mathbb{R}^n (i.e. the set of lines through the origin in \mathbb{R}^n).
- (c) X is the set of k-dimensional subspaces of \mathbb{R}^n , where $1 \leq k \leq n$.
- **A4**) If X and Y are G-sets, we say that a function $\phi: X \to Y$ is a G-set homomorphism if $\phi(gx) = g\phi(x)$, for all $g \in G$ and $x \in X$. A bijective homomorphism of G-sets is called an isomorphism of G-sets. Recall that if H is any subgroup of G, then the coset space G/H is a G-set under left multiplication by G. Prove that if H and K are subgroups of G, then the G-sets G/H and G/K are isomorphic if and only if $H = gKg^{-1}$ for some $g \in G$.
- **A5)** Let $GL_n(p) := GL_n(\mathbb{Z}/p\mathbb{Z})$ be the group of invertible $n \times n$ matrices over the field of integers modulo p, for p a prime number.
- (a) Compute the order $|GL_n(p)|$ of the group $GL_n(p)$.
- (b) Find a p-Sylow subgroup of $GL_n(p)$.
- **B1)** (a) Let G be a finite group acting on a finite set X. For each element $g \in G$, let $X^g = \{x \in X \mid gx = x\}$ be the subset of elements of X which are fixed by g. Prove the formula

$$\sum_{x \in X} |G_x| = \sum_{g \in G} |X^g|.$$

(b) Suppose that G has exactly m orbits in X. Prove that $m|G| = \sum_{g \in G} |X^g|$.

- (c) There are $70 = \binom{8}{4}$ ways to color the edges of a regular octagon, making four red and four green. The dihedral group D_8 acts on this set of 70 colorings, and the orbits of this action represent equivalent colorings. Determine the number of equivalence classes of such colorings.
- **B2)** Let $G = \mathrm{SL}(2,\mathbb{Z})$ be the group of 2×2 matrices with integer entries and determinant 1. Pick a prime number p and let U be the set of those 2×2 integer matrices whose determinant is p. G acts on U by left multiplication, i.e., if $\sigma \in G$ and $u \in U$ then $\sigma \cdot u$ is defined to be the matrix product σu .
- (a) Show that there are exactly p+1 orbits under this action of G on U and that the p+1 matrices

$$w_{\infty} = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, \quad w_r = \begin{pmatrix} 1 & r \\ 0 & p \end{pmatrix}, r = 0, 1, \dots, p - 1$$

lie one in each orbit. Write X for the set $\{0,1,\ldots,p-1,\infty\}$.

- (b) If $\sigma \in G$ and $r \in X$, show that there exists a unique $r' \in X$ such that the matrices $w_r \sigma^{-1}$ and $w_{r'}$ lie in the same orbit. Thus, from σ and r we get (unambiguously) an r'. Write this relation $P(\sigma)r = r'$. Thus, if σ is fixed, $P(\sigma)$ defines a permutation of the set X. Show that the map $\sigma \longmapsto P(\sigma)$ is a homomorphism $G \to S(X)$. That is, G acts on X, via : $\sigma \cdot r = P(\sigma)r$.
- (c) Let $N=\mathrm{Ker}P,$ where P is the homomorphism above. Prove that N is the set of matrices $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$ in $\mathrm{SL}(2,\mathbb{Z})$ such that

$$b, c \equiv 0 \mod p$$
 and $a \equiv d \equiv \pm 1 \mod p$.

The group G/N is denoted $\mathrm{PSL}(2,\mathbb{Z}/p\mathbb{Z})$. It is isomorphic to the group if all fractional linear transformations

$$x \longmapsto x' = \frac{ax+b}{cx+d}, \quad a, b, c, d \in \mathbb{Z}/p\mathbb{Z}, \quad ad-bc = 1.$$

(d) Show that $\operatorname{PSL}(2,\mathbb{Z}/p\mathbb{Z})$ acts transitively on X and that

$$|\operatorname{PSL}(2, \mathbb{Z}/p\mathbb{Z})| = \begin{cases} 6, & \text{if } p = 2\\ \frac{1}{2}(p^3 - p), & \text{if } p \neq 2. \end{cases}$$