A1) Let K and L be subfields of a field M and suppose that K and L both contain the field F. Let KL denote the subfield of M generated by $K \cup L$. Write $[K : F] = m$, $[L : F] = n$ and $[KL : F] = t$ (these cardinalities might be infinite).

(a) Prove that t is finite if and only if both m and n are finite.
(b) In this case show that both m and n divide t, and $t \leq mn$.
(c) If m and n are relatively prime, show that $t = mn$.

A2) If the degree of α over a field F is odd, prove that $F(\alpha) = F(\alpha^2)$.

A3) Let α be a complex root of the polynomial $x^3 - 3x + 4$, which is irreducible over \mathbb{Q}. Find the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}(\alpha)$ explicitly, in the form $u + v\alpha + w\alpha^2$, where $u, v, w \in \mathbb{Q}$.

A4) Suppose that α and β have minimal polynomials $x^2 + a_1x + a_2$ and $x^2 + b_1x + b_2$ over a field F, respectively.

(a) Use the method explained in class (or your own approach) to construct a polynomial in $F[x]$ which has $\alpha \beta$ as a root.
(b) Which polynomial does part (a) produce when $F = \mathbb{Q}$, $\alpha = \sqrt{m}$, and $\beta = \sqrt{n}$, where m and n are positive integers which are not perfect squares?

A5) Find, with proof, the minimal polynomial over \mathbb{Q} of $\sqrt{2} + \sqrt{3} + \sqrt{5}$.

A6) Prove that if m is an integer which is not a perfect square and if $a + b\sqrt{m}$ with $a, b \in \mathbb{Q}$ is the root of a polynomial $p(x) \in \mathbb{Q}[x]$, then $a - b\sqrt{m}$ is also a root of $p(x)$.

A7) In class we explained that a real number a is called constructible if, given the origin $(0, 0)$ and the point $(1, 0)$, we can use a straight edge and compass to construct the point $(a, 0)$.

(a) Prove that the set K of constructible real numbers is a subfield of \mathbb{R}.
(b) Prove that the field K is the smallest subfield of \mathbb{R} with the property that if $a > 0$ and $a \in K$, then $\sqrt{a} \in K$.

B1) (a) Let R and S be commutative rings and $f : R \to S$ a ring homomorphism making S into an R-module. Prove that if S is flat as an R-module, then $\text{Tor}_n^R(M, N) \cong \text{Tor}_n^S(S \otimes_R M, N)$ for all R-modules M and S-modules N. [Hint: Show that tensoring an R-module projective resolution for M with S gives an S-module projective resolution of $S \otimes_R M$.]
(b) Let $D^{-1}R$ be the localization of the commutative ring R with respect to the multiplicative subset D of R containing 1. Prove that $D^{-1}R$ is flat over R, or equivalently, that localization of modules is an exact functor.

(c) Prove that localization commutes with Tor, i.e.,
$$D^{-1}\text{Tor}_n^R(M, N) \cong \text{Tor}_n^{D^{-1}R}(D^{-1}M, D^{-1}N)$$
for all R-modules M and N and all $n \geq 0$.

(d) Given any R-module M and prime ideal P of R, let R_P (resp. M_P) denote the localization of R (resp. M) with respect to $D = R \setminus P$. Prove that an R-module M is flat if and only if M_P is a flat for every maximal (hence also for every prime) ideal P in R.

B2) Let F be any field.

(a) Suppose that the additive group $(F, +)$ is a finitely generated abelian group. Prove that F must be a finite field.

(b) Suppose that F is a finite field. Classify the additive subgroup $(F, +)$ up to group isomorphism.

B3) Let $n \geq 1$ be positive integer and
$$\zeta_n := e^{2\pi i/n} = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right).$$
Find the minimal polynomial over \mathbb{Q} of (a) ζ_6 (b) ζ_9 (c) ζ_{11} (d) ζ_{12}.

C problem

(a) Prove that it is possible to divide a 19° angle into 19 equal parts with a straight edge and compass.

(b) In part (a) you constructed a 1° angle. Why doesn’t this contradict the discussion in class on trisecting an angle of 60°?