Math 660 - Spring 2024 - Harry Tamvakis PROBLEM SET 6 - Due March 28, 2024

1) Prove the identity

$$
\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}}=\frac{\pi}{4^{n}} \frac{(2 n)!}{(n!)^{2}}
$$

for n any nonnegative integer.
2) Prove the identity

$$
\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{4}+a^{4}\right)^{2}}=\frac{3}{8} \frac{\sqrt{2}}{a^{7}} \pi
$$

for a any positive real number.
3) Let $u \in C_{0}^{\infty}(\mathbb{C})$ and let $n \geq 0$ be an integer. Prove that

$$
\iint_{\mathbb{C}} \frac{\partial u}{\partial \bar{z}} \cdot z^{n} d z \wedge d \bar{z}=0
$$

Prove, conversely, that if $f \in C_{0}^{\infty}(\mathbb{C})$ and

$$
\iint_{\mathbb{C}} f(z) \cdot z^{n} d z \wedge d \bar{z}=0, \quad \forall n \geq 0
$$

then

$$
u(w)=\frac{1}{2 \pi i} \iint_{\mathbb{C}} \frac{f(z)}{z-w} d z \wedge d \bar{z}
$$

has compact support.
Let $\omega_{1}, \omega_{2} \in \mathbb{C}$ be linearly independent over \mathbb{R}, so that $\Lambda:=\mathbb{Z} \omega_{1}+$ $\mathbb{Z} \omega_{2}$ is a lattice in \mathbb{C}. An elliptic function is a meromorphic function f on \mathbb{C} such that $f(z+\omega)=f(z)$ for all $\omega \in \Lambda$ and every $z \in \mathbb{C}$ where f is holomorphic. For $z_{0} \in \mathbb{C}$ let

$$
P\left(z_{0}\right):=\left\{z_{0}+t_{1} \omega_{1}+t_{2} \omega_{2} \mid 0 \leq t_{1} \leq 1,0 \leq t_{2} \leq 1\right\}
$$

and assume that the boundary $\partial P\left(z_{0}\right)$ does not contain any pole of f.
4) (a) Prove that $\int_{\partial P\left(z_{0}\right)} f(z) d z=0$.
(b) If $\partial P\left(z_{0}\right)$ does not contain any zero of f, prove that the interior of $P\left(z_{0}\right)$ contains equally many zeroes as poles of f, all counted with their multiplicities.
5) Assume that $\partial P\left(z_{0}\right)$ does not contain any zero or pole of f, and let z_{1}, \ldots, z_{n} (resp. w_{1}, \ldots, w_{n}) be the zeroes (resp. poles) of f in the interior of $P\left(z_{0}\right)$, counted with their multiplicities. Prove that

$$
\sum_{i=1}^{n}\left(z_{i}-w_{i}\right) \in \Lambda
$$

[Hint: Consider the integral $\int_{\partial P\left(z_{0}\right)} \frac{z f^{\prime}(z)}{f(z)} d z$.]

