Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 7 – Due October 23, 2025

- **A1)** Let G be a finite group. Suppose that G has a unique p-Sylow subgroup for each prime p dividing |G|. Prove that G is the direct product of its Sylow subgroups.
- **A2)** Let G be a finite group, let P be a p-Sylow subgroup of G and H be any subgroup. Show that if H contains the normalizer $N_G(P)$, then $N_G(H) = H$. In particular, $N_G(N_G(P)) = N_G(P)$.
- **A3)** Let G be the group of rotational symmetries of a regular tetrahedron. Describe the stabilizer of a vertex and the stabilizer of an edge. Find |G|. Prove that G is isomorphic to the alternating group A_4 .
- **A4)** Suppose $w \in S_n$ and let k_i denote the number of *i*-cycles in the decomposition of w as a product of disjoint cycles, for $1 \le i \le n$. Show that the conjugacy class of w has $n! / [(\prod i^{k_i})(\prod k_i!)]$ elements.
- **B1)** Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ and S_{∞} be the set of bijections $\sigma : \mathbb{N} \to \mathbb{N}$ such that there is a number M (depending on σ) so that $\sigma(n) = n$ if $n \geq M$.
- (a) Prove that S_{∞} is a subgroup of $S(\mathbb{N}) = \text{Perm}(\mathbb{N})$.
- (b) Show that the notion of an even permutation makes sense in S_{∞} . Let A_{∞} be the subgroup of even permutations in S_{∞} . Prove that A_{∞} has index 2 in S_{∞} , and therefore is a normal subgroup of S_{∞} .
- (c) It is known that A_n is a *simple* group provided $n \geq 5$. Assume this and prove that A_{∞} is also simple.
- (d) Show that S_{∞} has only two subgroups of finite index. However, prove that every finite group is isomorphic to a subgroup of S_{∞} .
- (e) Prove that neither the additive group $(\mathbb{Z},+)$ of integers nor the group $\mathrm{GL}(2,\mathbb{Z})$ of invertible 2×2 matrices with integer entries are isomorphic to subgroups of S_{∞} .
- (f) Finally, prove that if H is a finitely generated subgroup of S_{∞} , then H is a finite group.
- **B2)** (a) For any permutation $w \in S_n$, let r(w) denote the number of pairs (i,j) with $1 \le i < j \le n$ such that w(i) > w(j):

$$r(w) := \#\{(i,j) \, | \, i < j \ , \ w(i) > w(j)\}.$$

What is the set of all possible values r(w) as w ranges over permutations in S_n ? Justify your answer.

- (b) For each i with $1 \le i \le n-1$, let $s_i = (i, i+1)$ denote the transposition which interchanges i and i+1 in the symmetric group S_n . Show that the set $\{s_1, \ldots, s_{n-1}\}$ generates all of S_n .
- (c) For each pair of integers i and j with $1 \le i \le j \le n-1$, find the least positive integer m_{ij} such that $(s_i s_j)^{m_{ij}} = 1$. Determine the matrix $\{m_{ij}\}$ when n = 5.
- (d) For any $w \in S_n$, the *length* of w, denoted $\ell(w)$, is the minimal length k of a sequence a_1, \ldots, a_k such that $w = s_{a_1} \cdots s_{a_k}$. Prove that $\ell(w) = r(w)$.
- (e) For i < j, let t_{ij} denote the transposition (or 2-cycle) (ij) which interchanges i and j. Find a simple criterion in terms of w, i, and j that ensures that $\ell(wt_{ij}) = \ell(w) + 1$.
- **B3)** (a) Let G be a group and $S \subset G$ be a generating set such that $1 \notin S$. The Cayley graph C(G, S) of the pair (G, S) has a vertex for every element g in G and an edge connecting $g \in G$ to $h \in G$ if and only if there is an $s \in S \cup S^{-1}$ such that h = gs.

We'll say that S as above is a minimal generating set if no proper subset of S generates G. In each case below choose a minimal generating set S for the given group G and draw the Cayley graph C(G, S):

(i)
$$C_3 \times C_3$$
; (ii) $C_2 \times C_2 \times C_2$; (iii) D_5 ; (iv) Q (the quaternion group); (v) $(\mathbb{Z}^2, +)$.

(b) Let $G := S_4$ and $S := \{(12), (23), (34)\} = \{s_1, s_2, s_3\}$, as in problem B2 above. Draw a picture of the Cayley graph C(G, S), positioning the vertices in rows according to the length of each permutation.

Extra Credit Problem

C1) Let t be a formal variable and $\ell: S_n \to [0, +\infty)$ be the length function defined in problem B2. Prove the identity

$$\sum_{w \in S_n} t^{\ell(w)} = \prod_{k=1}^n \frac{t^k - 1}{t - 1} = (1 + t)(1 + t + t^2) \cdots (1 + t + \cdots + t^{n-1}).$$