A1) Let G be a finite group. Suppose that G has a unique p-Sylow subgroup for each prime p dividing $|G|$. Prove that G is the direct product of its Sylow subgroups.

A2) Let G be a finite group, let P be a p-Sylow subgroup of G and H be any subgroup. Show that if H contains the normalizer $N_G(P)$, then $N_G(H) = H$. In particular, $N_G(N_G(P)) = N_G(P)$.

A3) If G is a group of order 231, prove that the 11-Sylow subgroup is in the center of G.

A4) (a) Let p be an odd prime and let G be a group of order 2^p. Prove that the set $G^2 := \{g^2 \mid g \in G\}$ is a subgroup of G.

 (b) Let A_4 be the group of even permutations of four objects. Show that the set $A_4^2 := \{\sigma^2 \mid \sigma \in A_4\}$ is not a subgroup of A_4.

A5) Let $G = N \rtimes H$, and suppose that K is a subgroup of G with $N \subset K$. Prove that $K = N \rtimes (K \cap H)$.

A6) Let F be a field and let G be the group of upper triangular matrices in $GL(n, F)$.

 (a) Prove that $G = U \rtimes D$, where U is the subgroup of G consisting of matrices with with 1’s along the diagonal, and D is the group of diagonal matrices in $GL(n, F)$.

 (b) Suppose that $n = 2$. In this case note that $U \cong (F, +)$ and $D \cong (F^* \times F^*, \cdot)$. Describe the conjugation homomorphism $D \to \text{Aut}(U)$ explicitly in terms of these isomorphisms (i.e., show how each element of $F^* \times F^*$ acts as an automorphism on F).

B1) (a) Suppose that H is a subgroup of a group G of index 2. If K is a subgroup of G of odd order, prove that $K \subset H$.

 (b) Let G be a finite group and suppose that there exist subgroups

 \[G = G_0 \supset G_1 \supset \cdots \supset G_r = H \]

 with $|G_i : G_{i+1}| = 2$ for all i with $0 \leq i < r$. If $|H|$ is odd, prove that H is normal in G.

 (c) Let G be a group of order $2^k m$, where m is odd. Suppose that G contains a normal subgroup H of order m. Prove that there exist subgroups

 \[G = G_0 \supset G_1 \supset \cdots \supset G_r = H \]
with $|G_i : G_{i+1}| = 2$ for all i with $0 \leq i < r$.

B2 Let N and H be groups. An extension of N by H is a group E along with a monomorphism $\phi : N \to E$ and an epimorphism $\psi : E \to H$ such that $\phi(N) = \text{Ker}(\psi)$. In this case N embeds in E as a normal subgroup, with the quotient group being isomorphic to H. We identify N with its image under ϕ, and H with the quotient group E/N.

(a) We say that an extension E of N by H is a split extension if there is a homomorphism $\epsilon : H \to E$ (called the splitting map for the extension) such that $\psi \circ \epsilon$ is the identity map on H. Show that E is a split extension of N by H if and only if E is a semidirect product of N and H.

(b) Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ denote the quaternion group of order 8. Show that Q_8 can be realized as a non-trivial extension in four ways – thrice as an extension of C_4 by C_2, and once as an extension of C_2 by $C_2 \times C_2$, but that none of these extensions is split. This proves that Q_8 cannot be written in a non-trivial way as a semidirect product.

Extra Credit Problems

C1 Prove that all groups of order less than 60 are solvable. [Hint: Show that if $|G| = n < 60$, then for some prime p dividing n, the number m of p-Sylow subgroups of G does not exceed 4. If $m > 1$, consider the action of G by conjugation on the set of all p-Sylow subgroups and obtain a non-trivial homomorphism $G \to S_m$.]

C2 Follow up on problem B2 of homework #6 and prove: if p is a prime with $p \geq 5$, then $\text{PSL}(2, \mathbb{Z}/p\mathbb{Z})$ is a simple group. (This is the second infinite family of non-abelian finite simple groups; the alternating groups A_n for $n \geq 5$ were the first found. There is one overlap: $A_5 \cong \text{PSL}(2, \mathbb{Z}/5\mathbb{Z})$).