Math 406 – Fall 2025 – Harry Tamvakis PROBLEM SET 9 – Due Thursday, November 13, 2025

Reading for this week: the cryptography notes from class, and pages 83–89 from Section 11.

Problems

From the cryptography notes, Section 10.1, #3, 5, 11, 12, 13, 14, 15. In addition, do the following problems:

A1) Use frequency analysis and the knowledge that the message was enciphered using a shift transformation to decifer

PXAHE WMAXL XMKNM ALMHU XLXEY XOBWX GMMAT MTEEF XGTKX VKXTM XWXJN TEMAT MMAXR TKXXG WH-PXW URMAX BKVKX TMHKP BMAVX KMTBG NGTEB XGTUE XKBZA MLMAT MTFHG ZMAXL XTKXE BYXEB UXKMR TG-WMA XINKL NBMHY ATIIB GXLLQ

- **A2)** If the two most common letters in a long ciphertext which was enciphered by an affine transformation $C \equiv aP + b \pmod{26}$ are V and A respectively, then what are the two most likely values for a and b?
- A3) Decipher the message IEXXK FZKXC UUKZC STKJW that was enciphered using the affine transformation $C \equiv 11P + 18 \pmod{26}$.
- **A4)** Let p be an odd prime and (a, p) = 1. Show that the quadratic congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ has a solution in x if and only if $b^2 4ac$ is either zero or a quadratic residue of p.
- **A5)** If $p = 2^k + 1$ is prime, show that every quadratic nonresidue of p is a primitive root of p. [Hint: Apply Euler's Criterion.]