Math 600 – Fall 2025 – Harry Tamvakis PROBLEM SET 9 – Due November 13, 2025

A1) Let d be a non-zero square free integer, that is, d is divisible by no perfect square other than 1 (d might be negative). Consider one of the square roots of d in \mathbb{C} , and call it \sqrt{d} . Write $\mathbb{Z}[\sqrt{d}]$ for the set

$$\mathbb{Z}[\sqrt{d}] := \{x + y\sqrt{d} \mid x, y \in \mathbb{Z}\} \subset \mathbb{C}.$$

Check that under the ordinary operations in \mathbb{C} , $\mathbb{Z}[\sqrt{d}]$ is an integral domain (you don't need to write up the proof).

- (a) Prove that $x + y\sqrt{d}$ is a *unit* in $\mathbb{Z}[\sqrt{d}]$ if and only if $x^2 dy^2 = \pm 1$.
- (b) If d < 0, show the number of units in $\mathbb{Z}[\sqrt{d}]$ is always finite and that the group of units is a finite cyclic group. Find this group explicitly if d < 0 for each d.
- (c) Now consider the case $d \geq 2$ and start first with d = 2. Then $\xi = 1 + \sqrt{2}$ is a unit of $\mathbb{Z}[\sqrt{2}]$. Show that the group of units contains the cyclic group generated by ξ , which is an infinite cyclic group. Now choose $d \geq 2$, square free, and so that d+1 is a square (e.g. $d=15,35,143,\ldots$) Show that the group of units of $\mathbb{Z}[\sqrt{d}]$ is an infinite group (with more work one can show that the group of units is always infinite when $d \geq 2$).
- **A2)** Let σ be an automorphism of the ring $\mathbb R$ of real numbers (i.e. σ is a ring isomorphism $\mathbb R \to \mathbb R$). Prove that $\sigma(x) = x$, for all $x \in \mathbb R$. In other words, the only automorphism of $\mathbb R$ is the identity. [Hint: First show that $\sigma(q) = q$ for any rational number q, and then that x < y implies $\sigma(x) < \sigma(y)$ for all $x, y \in \mathbb R$.] By the way, this is *false* for $\mathbb C$; in fact, there are infinitely many automorphisms of $\mathbb C$.
- **A3)** (a) An element x of a ring R is called *nilpotent* if $x^n = 0$ for some integer $n \ge 1$. Show that the set of nilpotent elements in a commutative ring R is an ideal of R.
- (b) Find all nilpotent elements in the ring $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$.
- **A4)** Let F be any field. Prove that the ring $M_n(F)$ of all $n \times n$ matrices with entries in F has no non-zero proper two sided ideal.
- **B1)** (a) Let R = C[0,1] be the ring of continuous functions $f : [0,1] \to \mathbb{R}$. Given $c \in [0,1]$, let $M_c = \{f \in R \mid f(c) = 0\}$. Prove that M_c is a maximal ideal of R.
- (b) Prove that if M is any maximal ideal of R then there is a real number $c \in [0, 1]$ such that $M = M_c$.

- (c) Prove that M_c is not equal to the principal ideal generated by x c. In fact, show that M_c is not a finitely generated ideal.
- (d) Is a similar result to (b) true for the maximal ideals in the ring $C(\mathbb{R})$ of continuous functions $f: \mathbb{R} \to \mathbb{R}$? Justify your answer.
- **B2)** Let F be a field and consider the ring $M_n(F)$ of $n \times n$ matrices over k. You showed in problem (A2) that $M_n(F)$ has no two-sided ideals other than (0) and $M_n(F)$. Let $B \subset M_n(F)$ be the subring consisting of all upper triangular matrices. In contrast to the full matrix ring $M_n(F)$, the ring B has plenty of two-sided ideals.
- (a) Find all the maximal two-sided ideals of B. [Suggestion: Start with n=2 and n=3, where explicit calculations show what is happening. Then prove the general result.] You are expected to have a clean and clear description of these ideals and a proof that your description includes them all.
- (b) Find all two-sided ideals of B.
- **B3)** Let A be a commutative ring and $f(x) \in A[x]$, $f(x) \neq 0$. Suppose that there is a non-zero polynomial $g(x) \in A[x]$ such that g(x)f(x) = 0. Show that there is an $a \in A$ with $a \neq 0$ and af(x) = 0. Be careful, A may have nilpotent elements, i.e. elements α such that $\alpha^m = 0$.

Extra Credit Problem

C1) Let $F_2 = \langle a, b \rangle$ be the free group on two generators and

$$F_{\infty} = \langle x_1, x_2, x_3, \ldots \rangle$$

be the free group on countably many generators. Prove the surprising fact that there is a subgroup H of F_2 that is isomorphic to F_{∞} . That is, the free group on 2 generators contains the free group on infinitely many generators!