
CMSC 250: Introduction to Algorithm Analysis

Justin Wyss-Gallifent

April 20, 2023

1 Introduction . 2
2 Selecting the First Element in a List 2
3 Selecting the Smallest Element in a List 2
4 Selecting the Smallest Element in a Square 2D Array 5
5 A Fun Algorithm . 6
6 Bubble Sort . 8

6.1 Introduction . 8
6.2 Pseudocode . 8
6.3 Best Case . 9
6.4 Worst Case . 9

1

1 Introduction

The goal of these notes is to see how some of the topics we learned in the course
can be used to analyze algorithms.

Primarily we will focus on counting-type arguments, including:

• How many of a certain operation does an algorithm do, depending on its
input?

• How long does an algorithm take to run, depending on its input?

In all three of these there are three classic notions:

• The best case. This is typically the “fastest case” or the case that requires
the least of a certain operation.

• The worst case. This is typically the “slowest case” or the case which
requires the most of a certain operaton.

• The average case. This is perhaps the hardest to understand because the
meaning is vague. Average over what? All possible input? All possible
real-world input? Mostly likely real-world input?

2 Selecting the First Element in a List

Here is the pseudocode:

% Assume A is a list with n elements index 0 through n-1.

first = A[0]

This requires exactly one assignment. If an assignment takes 3 seconds then so
does the entire pseudocode. Neither of these depends upon the input A.

Easy but worth mentioning!

3 Selecting the Smallest Element in a List

Now consider the process of selecting not the first but the smallest element in
a list.

Here is the pseudocode. For simplicity we will assume that the logistics of the
loop require no assignments, time, etc., just the code in the body of the loop.

% Assume A is a list with n elements index 0 through n-1.

min = A[0]

for i = 1 to n-1

if A[i] < min:

min = A[i]

end

2

end

Note that we don’t need to start the loop at n = 0 because A[0] is already
assigned as a pre-emptive first minimum.

Question: How many comparisons does this require?

Answer: The loop runs n − 1 times and consequently n − 1 comparisons will
be made.

Question: How many assignments does this require in the best case?

Answer: The best case here will occur when the first element is the minimum,
the inequality will fail each time and there will be just the first assignment, so
1.

Question: How many assignments does this require in the worst case?

Answer: The worst case here will be when each successive element is smaller,
meaning the list is decreasing, since this will force the inequality to always
be satisfied and the body of the loop will always run. Then we will have the
assignment before the loop and n− 1 more for a total of n.

Question: How many assignments does this require in the average case?

Answer: As we mentioned earlier we cannot answer this without some notion
of what “average” means. Here are some ideas for this problem.

(a) Suppose our list will always contain exacctly three distinct elements. Since
the functioning of the code doesn’t depend on the actual values but the
comparisons between them, for the sake of discussion this means we can
consider just six inputs:

[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

We can analyze each:

• [1, 2, 3] takes 1 assignment.

• [1, 3, 2] takes 1 assignment.

• [2, 1, 3] takes 2 assignments.

• [2, 3, 1] takes 2 assignments.

• [3, 1, 2] takes 2 assignments.

• [3, 2, 1] takes 3 assignments.

On average (1 + 1 + 2 + 2 + 2 + 3)/6 = 11/6 assignments.

Observe we can think about this as an expected value problem whereby there
is a 1/6 probability of each input and the expected number of assignments
is then 11/6.

3

(b) Suppose our list tends to be increasing where “tends to” means that as we
go further along the list we are less likely to encounter a smaller element.
Let’s say that element A[j] has a 1/(2j) probability of being smaller than
all previous elements. How many assignments should we expect now?

Let’s have a think:

• There is the first assignment, probability 1.

• There is a 1/21 probability that A[1] is smaller than all previous ele-
ments and in such a case an assignment will occur.

• There is a 1/22 probability that A[2] is smaller than all previous ele-
ments and in such a case an assignment will occur.

• ...

• There is a 1/2n−1 probability that A[n−1] is smaller than all previous
elements and in such a case an assignment will occur.

The expected number of assignments is then:

1 +
1

2
+

1

4
+ ... +

1

2n−1

We can rewrite this:

n−1∑
j=0

1

2j
=

n−1∑
j=0

(
1

2

)j

=
1 −

(
1
2

)n
1 − 1

2

= ...algebra... =
2n − 1

2n−1

For example a list of length 7 will require, on average:

27 − 1

26
=

127

64
≈ 1.98 assignments

This second example was pretty simple and still demanded a geometric sum for-
mula. We can imagine how hard this could get for more complicated algorithms
and data.

Question: Suppose a comparison takes 2 seconds no matter what and assign-
ments takes 1 second. However suppose our list structure is a bit more convo-
luted than it seems and assigning from values later in the list is more expensive,
timewise. It turns out that the line min = A[i] takes 1+0.5i seconds. Moreover
suppose our list tends to be increasing as with the previous calculation. How
long should we expect our algorithm to take?

Answer: There are n − 1 comparisons so that’s 2(n − 1) seconds, that’s easy.
As for the assignments and accesses:

• The first assignment takes 1 + 0.5(0) seconds, probability 1.

4

• There is a 1/21 probability that A[1] is smaller than all previous elements
and in such a case an assignment will occur, taking 1 + 0.5(1) seconds.

• There is a 1/22 probability that A[2] is smaller than all previous elements
and in such a case an assignment will occur, taking 1 + 0.5(2) seconds.

• ...

• There is a 1/2n−1 probability that A[n − 1] is smaller than all previous
elements and in such a case an assignment will occur, taking 1+0.5(n−1)
seconds.

The expected time is then:

2(n−1)+

(
1

20

)
(1+0.5(0))+

(
1

21

)
(1+0.5(1))+

(
1

22

)
(1+0.5(2))+...+

(
1

2n−1

)
(1+0.5(n−1))

We can rewrite this:

2(n− 1) +

n−1∑
j=0

(
1

2j

)
(1 + 0.5j) = 2(n + 1) +

n−1∑
j=0

(
1

2

)j

+
1

2

n−1∑
j=0

j

2j

We can simplify the first sum, just like we did earlier. We do not currently, in
this course, have a formula for the second sum. We will see one in CMSC351.

4 Selecting the Smallest Element in a Square 2D
Array

Here is the pseudocode:

% Assume A is a 2D array with nxn elements.

min = A[0,0]

for i = 0 to n-1

for j = 0 to n-1

if A[i,j] < min:

min = A[i,j]

end

end

end

Note that without making the pseudcode more complicated we are required to
compare A[0, 0] unnecessarily.

Question: How many comparisons does this require?

Answer: This is easy, it will require n2 comparisons.

Question: How many assignments does this require in the best case?

5

Answer: As with the previous code, in the best case just 1.

Question: How many assignments does this require in the worst case?

Answer: In the worst case 1 + n2 because there will be the initial assignment
followed by n2−1 assignments. Note that the comparison A[0,0] < min inside
the loops will never be satisfied and so inside the loops the assignment will only
happen n2 − 1 times.

Question: How many assignments does this require in the average case?

Answer: As is on par with out discussions, this is a loaded question. What
does average mean, etc.?

Question: Suppose it takes i + 2j seconds to run the code min = A[i,j]. In
the worst case how long will it take the code to run?

Answer: The assignment before the loops will take 0 + 20 = 1 seconds. Includ-
ing the loops, the time required will be:

1 +

n−1∑
i=0

n−1∑
j=0

(
i + 2j

)
This simplifies:

1 +

n−1∑
i=0

n−1∑
j=0

(
i + 2j

)
=

n−1∑
i=0

n−1∑
j=0

i +

n−1∑
j=0

2j

= 1 +

n−1∑
i=0

[ni + 2n − 1]

= 1 + n

n−1∑
i=0

i +

n−1∑
i=0

[2n − 1]

= 1 + n

(
(n− 1)(n)

2

)
+ n(2n − 1)

5 A Fun Algorithm

Consider the following algorithm in the form of a function:

def f(n):

if n = 0:

return(0)

else:

return(factorial(n)+f(n-1))

end

6

end

First of all let’s plug some numbers in to see how it works.

• If we input f(0) it just returns 0.

• If we input f(1) it returns 1! + f(0) = 1.

• If we input f(2) it returns 2! + f(1) = 2 + 1 = 3.

• If we input f(3) it returns 3! + f(2) = 6 + 3 = 9.

• If we input f(4) it returns 4! + f(3) = 24 + 9 = 33.

• And so on.

Question: How many additions does this perform?

Answer: The call f(0) performs none. A call to f(n) will perform 1 addition
and a call to f(n− 1). Therefore a call to f(n) will perform n additions.

Question: How many multiplications does this perform?

Answer: Assume k! perform k−1 multiplications because it’s 1 ·2 · ... ·k. Then
we have:

• f(0) performs 0

• f(1) performs 1! + f(0) so 0.

• f(2) performs 2! + f(1) so 1 + 0 = 1.

• f(3) performs 3! + f(2) so 2 + 1 = 3.

• f(4) performs 4! + f(3) so 3 + 3 = 6.

• f(5) performs 5! + f(4) so 4 + 6 = 10.

• And so on.

In general f(n) performs 1 + 2 + ... + (n− 1) = (n− 1)n/2 multiplications.

Question:

Suppose each addition takes 2 seconds and each multiplication takes 6 seconds.
More over suppose the input is a number from 1 to 100 inclusive with each
equally likely. How long should we expect the algorithm to run on average?

Answer:

Denote by pi the probability of the input being i and by xi the time required
for input i.

Then we have:

pi =
1

100

And we have:

7

xi = 2i + 6

(
(i− 1)i

2

)
= 3i2 − i

The expected value will then be:

p1x1 + ... + p100x100 =

100∑
i=1

1

100
(3i2 − i)

=
1

100

[
3

100∑
i=1

i2 −
100∑
i=1

i

]

=
1

100

[
3

(
100(100 + 1)(2(100) + 1)

6

)
− 100(100 + 1)

2

]
= ...

= 10100

So on average 10100 seconds.

6 Bubble Sort

6.1 Introduction

Bubble Sort comes in a variety of versions. It’s not the best sorting algorithm
but it’s a good introduction because it’s easy to understand, especially compared
to some others.

6.2 Pseudocode

Here is the pseudocode for one particular version.

% Assume A is a list of length n.

didaswap = True

for i = 0 to n-2

didaswap = False

for j = 0 to n-i-2

if A[j] > A[j+1]

swap A[i] and A[i+1]

didaswap = True

end

end

if didaswap == False

break

end

end

8

Take some time to understand how this algorithm works.

When i = 0 it passes through the list, from j = 0 to j = n − 0 − 2 = n − 2,
comparing each A[j] to A[j+1] and swapping if the left one is larger. Effectively
this will move the largest element to the end of the list. If any swaps were made,
a flag is set which indicates that another pass should be made.

When i = 1 we don’t need to worry about the last element since it’s the largest,
so we pass through the list again but ignore that last element, we see we pass
from j = 0 to j = n − 1 − 2 = n − 3. otherwise the idea is the same as i = 0
except in this case when we finish the largest two elements are in order at the
end of the list.

We continue this until no swaps are made, which indicates the list is in order.

Since, after the ith iteration, the final i+ 1 elements are in order, we know that
when i = n − 2, the final n − 2 + 1 = n − 1 elements are in order, so they are
all in order, and no swaps will occur.

Now, as for analyzing this, let’s suppose that the if-statement takes c seconds
for some constant c, no matter if true or false. How much times does the code
take to run?

6.3 Best Case

If the list is already sorted then we have one pass through for i=0 with n− i−1
iterations and since no swaps occur we exit. The time is then:

T (n) =

n−i−2∑
j=0

c = (n− i− 1)c

6.4 Worst Case

If the list is in reverse order then each i loop iteration results in n − i − 1
comparisons and swaps. To see this observe that if we start with [5, 4, 3, 2, 1]
then the i=0 pass has n−i−1 = 5−0−1 = 4 comparisons and swaps and results
in [4, 3, 2, 1, 5]. The i=1 pass has n − i − 1 = 5 − 1 − 1 = 3 comparisons and
swaps and results in [3, 2, 1, 4, 5], and so on. We therefore use all of i=0,...,n-1
iterations (no break) and the time is then:

9

T (n) =

n−2∑
i=0

n−i−2∑
j=0

c

=

n−2∑
i=0

(n− i− 1)c

=

n−2∑
i=0

(n− 1) −
n−1∑
i=0

i

= (n− 1)(n− 1) − (n− 2)(n− 1)

2

= n2 − 2n + 1 − 1

2
n2 +

3

2
n− 1

=
1

2
n2 − 1

2
n

10

	Introduction
	Selecting the First Element in a List
	Selecting the Smallest Element in a List
	Selecting the Smallest Element in a Square 2D Array
	A Fun Algorithm
	Bubble Sort
	Introduction
	Pseudocode
	Best Case
	Worst Case

